Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Structural-functional relationships in diabetic nephropathy.
S M Mauer, … , D M Brown, F C Goetz
S M Mauer, … , D M Brown, F C Goetz
Published October 1, 1984
Citation Information: J Clin Invest. 1984;74(4):1143-1155. https://doi.org/10.1172/JCI111523.
View: Text | PDF
Research Article

Structural-functional relationships in diabetic nephropathy.

  • Text
  • PDF
Abstract

Renal biopsies in 45 patients with insulin-dependent diabetes mellitus (IDDM) were examined by semiquantitative light microscopy and quantitative electron microscopic stereologic morphometry. In these 14 males and 31 females, aged 13-52 yr, who had had IDDM for 2.5-29 yr there was no strong relationship between either glomerular basement membrane (GBM) thickness or mesangial expansion and duration of IDDM. There was only a weak relationship between the thickness of the GBM and expansion of the mesangium. Thus, GBM thickening and mesangial expansion in IDDM occur at rates that often differ from one another and that vary greatly among patients. The clinical manifestations of diabetic nephropathy, albuminuria, hypertension, and decreased glomerular filtration rate related poorly or not at all to GBM thickening. In contrast, all light and electron microscopic measures of mesangial expansion were strongly related to the clinical manifestations of diabetic nephropathy, although in the absence of these clinical findings, it was not possible to predict the severity of any of the diabetic glomerular lesions. Mesangial expansion had strong inverse correlations with capillary filtering surface area density. It is hypothesized that mesangial expansion could lead to glomerular functional deterioration in IDDM by restricting the glomerular capillary vasculature and its filtering surface. However, capillary closure, glomerular sclerosis, and interstitial fibrosis could also contribute to the clinical manifestations of this disorder.

Authors

S M Mauer, M W Steffes, E N Ellis, D E Sutherland, D M Brown, F C Goetz

×

Usage data is cumulative from May 2021 through May 2022.

Usage JCI PMC
Text version 1,324 0
PDF 159 67
Figure 0 6
Scanned page 257 100
Citation downloads 17 0
Totals 1,757 173
Total Views 1,930
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts