Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111520

Prostaglandins inhibit renal ammoniagenesis in the rat.

E R Jones, T R Beck, S Kapoor, R Shay, and R G Narins

Find articles by Jones, E. in: PubMed | Google Scholar

Find articles by Beck, T. in: PubMed | Google Scholar

Find articles by Kapoor, S. in: PubMed | Google Scholar

Find articles by Shay, R. in: PubMed | Google Scholar

Find articles by Narins, R. in: PubMed | Google Scholar

Published September 1, 1984 - More info

Published in Volume 74, Issue 3 on September 1, 1984
J Clin Invest. 1984;74(3):992–1002. https://doi.org/10.1172/JCI111520.
© 1984 The American Society for Clinical Investigation
Published September 1, 1984 - Version history
View PDF
Abstract

We describe the inhibitory effect of prostaglandins (PGs) on in vivo rat renal ammonia synthesis. The influence of systemic pH upon urinary PG excretion and ammoniagenesis was also investigated. Finally, PG production by incubated rat renal cortical slices was suppressed to investigate the PG-ammonia interplay in the absence of changes in renal blood flow, glomerular filtration rate, ambient electrolyte concentrations or extrarenal hormonal factors. In vivo ammonia synthesis doubled and PG excretion fell by 44% in normal rats, after intravenous administration of 1 mg/kg of meclofenamate. Higher doses of meclofenamate further augmented ammonia production and further reduced PG excretion. PG depletion was also associated with an increase in fractional excretion of ammonia (FENH3) that was independent of changes in urine flow rate or pH. Acute metabolic acidosis (AMA) increased total ammonia synthesis but also stimulated PG production. Administration of meclofenamate to rats with mild AMA markedly reduced urinary PG excretion, further augmented ammonia synthesis, and significantly increased the FENH3. Inhibition of stimulated PG synthesis during severe AMA did not increase ammoniagenesis or FENH3. Acute metabolic alkalosis did not alter production of PGs or ammonia, but reduced the FENH3 by 42%. Meclofenamate nearly normalized the FENH3 but stimulated synthesis to a lesser degree than was seen in nonalkalotic rats that received meclofenamate. Inhibition of PG synthesis in incubated rat renal cortical slices also stimulated ammoniagenesis. Conversely, stimulation of PG synthesis decreased ammonia production and acidification of the incubation medium increased prostaglandin F2 alpha production. Thus, in vitro findings support the in vivo results. We conclude that PGs inhibit ammonia synthesis in normal rats and in those undergoing mild AMA. Severe acidosis overrides this inhibitory effect of PGs, whereas metabolic alkalosis suppresses the stimulatory effect of PG synthesis inhibition.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 992
page 992
icon of scanned page 993
page 993
icon of scanned page 994
page 994
icon of scanned page 995
page 995
icon of scanned page 996
page 996
icon of scanned page 997
page 997
icon of scanned page 998
page 998
icon of scanned page 999
page 999
icon of scanned page 1000
page 1000
icon of scanned page 1001
page 1001
icon of scanned page 1002
page 1002
Version history
  • Version 1 (September 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts