Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111515

Pulmonary response of fifth component of complement-sufficient and -deficient mice to hyperoxia.

D A Parrish, B C Mitchell, P M Henson, and G L Larsen

Find articles by Parrish, D. in: PubMed | Google Scholar

Find articles by Mitchell, B. in: PubMed | Google Scholar

Find articles by Henson, P. in: PubMed | Google Scholar

Find articles by Larsen, G. in: PubMed | Google Scholar

Published September 1, 1984 - More info

Published in Volume 74, Issue 3 on September 1, 1984
J Clin Invest. 1984;74(3):956–965. https://doi.org/10.1172/JCI111515.
© 1984 The American Society for Clinical Investigation
Published September 1, 1984 - Version history
View PDF
Abstract

The fifth component of complement, C5, can form fragments that cause neutrophil chemotaxis, oxygen radical production, and lysosomal enzyme release. The purpose of this study was to determine if C5 and these fragments contribute to the inflammation seen in pulmonary oxygen toxicity as defined by histology and analysis of bronchoalveolar lavage fluid (BALF). In addition, the role of C5 in producing mortality in the animals was addressed. Pairs of C5 deficient (C5-) and C5 sufficient (C5+) mice, 6 mo or older, were placed in a chamber and challenged with 95% oxygen at ambient pressure. A significant difference in mortality was observed after 200 h of exposure, i.e., 90% mortality in C5+ mice vs. 25% mortality in C5- mice (P less than 0.001). This difference in mortality was not seen when C5- mice were transfused with plasma that contained C5 derived from C5+ mice. Morphometric analysis of histologic sections with light microscopy revealed earlier pathologic changes in C5+ mice that was characterized by increased cellularity due in part to neutrophil influx into the alveolar-capillary wall. Transmission electron microscopy also confirmed an earlier inflammatory response in the C5+ mice with evidence of injury to alveolar epithelial cells, interstitial edema, and an increase in the cellular component of the interstitium. Analysis of BALF also demonstrated earlier abnormalities in C5+ mice, which included a significantly greater percentage of neutrophils in the C5+ mice at 117 h. Similar studies in younger mice of these strains again showed earlier neutrophil accumulation in C5+ mice, but the time course of the injury was more protracted. This study shows that the presence of C5 is associated with a greater mortality and an earlier influx of neutrophils into murine lungs. However, in the absence of C5, neutrophils will still immigrate into the lung and hyperoxic damage will occur at a later time point, which demonstrates the inherent redundancy of the inflammatory process.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 956
page 956
icon of scanned page 957
page 957
icon of scanned page 958
page 958
icon of scanned page 959
page 959
icon of scanned page 960
page 960
icon of scanned page 961
page 961
icon of scanned page 962
page 962
icon of scanned page 963
page 963
icon of scanned page 964
page 964
icon of scanned page 965
page 965
Version history
  • Version 1 (September 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts