Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111510

Regulation of pituitary gonadotropin-releasing hormone receptors by pulsatile gonadotropin-releasing hormone injections in male rats. Modulation by testosterone.

A Garcia, M Schiff, and J C Marshall

Find articles by Garcia, A. in: PubMed | Google Scholar

Find articles by Schiff, M. in: PubMed | Google Scholar

Find articles by Marshall, J. in: PubMed | Google Scholar

Published September 1, 1984 - More info

Published in Volume 74, Issue 3 on September 1, 1984
J Clin Invest. 1984;74(3):920–928. https://doi.org/10.1172/JCI111510.
© 1984 The American Society for Clinical Investigation
Published September 1, 1984 - Version history
View PDF
Abstract

The pattern of the gonadotropin-releasing hormone (GnRH) stimulus is critically important in the regulation of pituitary gonadotropin secretion and continuous infusions down-regulate secretion while intermittent pulses maintain luteinizing hormone (LH) and follicle-stimulating hormone (FSH) responsiveness. We examined the effects of pulsatile GnRH administration on pituitary GnRH receptors (GnRH-R) and gonadotropin secretion in the presence of physiological concentrations of testosterone (T) to elucidate the mechanisms and sites of action of GnRH and T on the pituitary gonadotroph. Castrate male rats received one, two, or four testosterone (T) implants (serum T concentrations of 1.1, 2.4, and 5.2 ng/ml, respectively) to suppress endogenous GnRH secretion. Subsequently, intracarotid pulse injections of GnRH (5-250 ng/pulse) or saline in controls were given every 30 min for 48 h, after which gonadotropin responses and pituitary GnRH-R were measured. In control rats, the T implants prevented the rise in GnRH-R that was seen in castrates (empty implant--600 fmol/mg protein) and maintained receptors at the level that was present in intact animals (300 fmol/mg). Pulsatile GnRH administration increased GnRH-R in castrate T-implanted rats, but the response was dependent on the serum T concentration. With one T implant, increasing GnRH doses per pulse stimulated GnRH-R in a linear manner and the maximum receptor concentration (703 +/- 99 fmol/mg) was seen after the 250 ng GnRH dose. In the presence of two T implants, GnRH-R was maximal (705 +/- 45 fmol/mg) after the 25-ng dose and higher doses did not increase receptors above control values. With four T implants, GnRH doses of 5 ng induced a maximum response, 17-50 ng/pulse did not increase GnRH-R, but receptors were again increased by the 250-ng dose (633 +/- 86 fmol/mg). After 48 h of pulsatile GnRH administration there was no correlation between the number of GnRH-R and LH responses to GnRH. In rats with one or two T implants, LH responses were absent after all but the 250-ng doses. In contrast, LH responsiveness was not impaired in the presence of four implants. Thus, low dose GnRH pulses down-regulate LH secretion by an action at a post GnRH-R site, and this effect is regulated by testosterone. The results show that GnRH, given in a pulsatile manner, regulates its own receptor, and physiological increases in serum T produce a 50-fold increase in the sensitivity of GnRH-R stimulation by GnRH.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 920
page 920
icon of scanned page 921
page 921
icon of scanned page 922
page 922
icon of scanned page 923
page 923
icon of scanned page 924
page 924
icon of scanned page 925
page 925
icon of scanned page 926
page 926
icon of scanned page 927
page 927
icon of scanned page 928
page 928
Version history
  • Version 1 (September 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts