Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Differential expression of Ia molecules by human monocytes.
T A Gonwa, J D Stobo
T A Gonwa, J D Stobo
Published September 1, 1984
Citation Information: J Clin Invest. 1984;74(3):859-866. https://doi.org/10.1172/JCI111503.
View: Text | PDF
Research Article

Differential expression of Ia molecules by human monocytes.

  • Text
  • PDF
Abstract

Human immune response genes can be divided into three distinct loci, each of which codes for three distinct families of Ia molecules: HLA-SB, HLA-DC, and HLA-DR. The tissue distribution and function of only one of these Ia molecules, HLA-DR, has been thoroughly studied. Using monoclonal antibodies, we examined the display of HLA-DR and HLA-DC molecules by adherent, human peripheral blood monocytes. The results of these studies demonstrate that although all human peripheral blood monocytes display easily detectable HLA-DR molecules, only 50% display easily detectable HLA-DC molecules. Separation of peripheral blood monocytes into HLA-DC+ and HLA-DC- cells demonstrates that each population displays an equivalent density of HLA-DR molecules. Therefore, on the basis of differences in their display of these two Ia molecules, adherent peripheral blood monocytes can be divided into two broad populations: HLA-DR+, HLA-DC+, and HLA-DR+, HLA-DC-. Despite the dis-coordinate display of these Ia antigens, the expression of both HLA-DR and HLA-DC can be regulated by a common signal, gamma interferon (IFN-gamma). Incubation of monocytes for 96 h in autologous serum leads to a marked decrease in the expression of both HLA-DR and HLA-DC. Addition of recombinant IFN-gamma to the cultures leads to reexpression of both HLA-DR and HLA-DC to levels comparable to those seen in fresh monocytes. In addition, although IFN-gamma does not modulate all monocyte surface markers, it can be demonstrated to modulate expression of one marker, MAC 120, in a manner similar to that observed for Ia antigens. These studies demonstrate that among human peripheral blood monocytes, the distribution of the Ia molecule, HLA-DC, is not coordinate with that of HLA-DR, although both respond to the same regulatory signal.

Authors

T A Gonwa, J D Stobo

×

Full Text PDF

Download PDF (1.38 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts