Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Aggregating platelets contract isolated canine pulmonary arteries by releasing 5-hydroxytryptamine.
M D McGoon, P M Vanhoutte
M D McGoon, P M Vanhoutte
Published September 1, 1984
Citation Information: J Clin Invest. 1984;74(3):828-833. https://doi.org/10.1172/JCI111499.
View: Text | PDF
Research Article

Aggregating platelets contract isolated canine pulmonary arteries by releasing 5-hydroxytryptamine.

  • Text
  • PDF
Abstract

To examine the effect of platelets and 5-hydroxytryptamine on pulmonary arterial smooth muscle, rings of canine pulmonary arteries, with and without endothelium, were studied under isometric conditions in physiological salt solution. 5-Hydroxytryptamine, but not the thromboxane-like endoperoxide analogue U-46619, produced concentration-dependent contractions of the rings with a maximum averaging 93% of that obtained with KC1. Autologous platelets in concentrations comparable to that in plasma caused contractions averaging 70% of the maximal responses to KC1. Solution withdrawn from baths containing platelet-contracted rings, but not the supernatant from nonaggregated platelets, also caused contraction. The serotonergic antagonists cyproheptadine, ketanserin, and methysergide caused concentration-dependent inhibition and eventually abolition of contractions evoked by platelets and 5-hydroxytryptamine. Phentolamine and prazosin produced significantly less inhibition of the contractile response to platelets. Pretreatment of the platelets with indomethacin or meclofenamate reduced thromboxane release but had no effect on platelet-induced contractions. Removal of the endothelium did not affect contractile responses to platelets or 5-hydroxy-tryptamine. These experiments demonstrate that in the canine pulmonary artery: (a) 5-hydroxytryptamine is the predominant mediator of the contractile response triggered by platelet aggregation; and (b) unlike in other blood vessels, the endothelium cannot curtail the contractile response to aggregating platelets.

Authors

M D McGoon, P M Vanhoutte

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 120 7
PDF 83 12
Scanned page 209 2
Citation downloads 57 0
Totals 469 21
Total Views 490
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts