Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111497

Bepridil and cetiedil. Vasodilators which inhibit Ca2+-dependent calmodulin interactions with erythrocyte membranes.

P Agre, D Virshup, and V Bennett

Find articles by Agre, P. in: PubMed | Google Scholar

Find articles by Virshup, D. in: PubMed | Google Scholar

Find articles by Bennett, V. in: PubMed | Google Scholar

Published September 1, 1984 - More info

Published in Volume 74, Issue 3 on September 1, 1984
J Clin Invest. 1984;74(3):812–820. https://doi.org/10.1172/JCI111497.
© 1984 The American Society for Clinical Investigation
Published September 1, 1984 - Version history
View PDF
Abstract

Two new vascular smooth muscle relaxants, bepridil and cetiedil, were found to possess specific CaM-inhibitory properties which resembled those of trifluoperazine. Trifluoperazine, bepridil, and cetiedil inhibited Ca2+-dependent 125I-CaM binding to erythrocyte membranes and CaM activation of membrane Ca2+-ATPase with IC50 values of approximately 12, approximately 17, and approximately 40 microM, respectively. This does not appear to be the result of a nonspecific hydrophobic interaction since inhibition was not observed with micromolar concentrations of many other hydrophobic agents. The predominant inhibition of binding and Ca2+-ATPase activation was competitive with respect to CaM. Bepridil and cetiedil bind directly to CaM since these drugs displaced [3H]trifluoperazine from sites on CaM. Inhibition of Ca2+-ATPase and binding by the drugs was not due to interference with the catalytic activity of this enzyme since: (a) neither inhibition of CaM-independent basal Ca2+-ATPase activity nor inhibition of proteolytically-activated Ca2+-ATPase activities were produced by these agents, and (b) no drug-induced inhibition of CaM binding was detected when membranes were preincubated with these agents but washed prior to addition of 125I-CaM. Thus, bepridil and cetiedil competitively inhibit Ca2+-dependent interactions of CaM with erythrocyte membranes, most likely by a direct interaction between these drugs and CaM. The principal clinical actions of these drugs may be explained by their interactions with CaM or CaM-related proteins leading to reduced activation of Ca2+-regulated enzymes in certain other tissues, such as myosin light chain kinase in vascular smooth muscle.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 812
page 812
icon of scanned page 813
page 813
icon of scanned page 814
page 814
icon of scanned page 815
page 815
icon of scanned page 816
page 816
icon of scanned page 817
page 817
icon of scanned page 818
page 818
icon of scanned page 819
page 819
icon of scanned page 820
page 820
Version history
  • Version 1 (September 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts