Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111489

Functional domains on von Willebrand factor. Recognition of discrete tryptic fragments by monoclonal antibodies that inhibit interaction of von Willebrand factor with platelets and with collagen.

J J Sixma, K S Sakariassen, H V Stel, W P Houdijk, D W In der Maur, R J Hamer, P G de Groot, and J A van Mourik

Find articles by Sixma, J. in: PubMed | Google Scholar

Find articles by Sakariassen, K. in: PubMed | Google Scholar

Find articles by Stel, H. in: PubMed | Google Scholar

Find articles by Houdijk, W. in: PubMed | Google Scholar

Find articles by In der Maur, D. in: PubMed | Google Scholar

Find articles by Hamer, R. in: PubMed | Google Scholar

Find articles by de Groot, P. in: PubMed | Google Scholar

Find articles by van Mourik, J. in: PubMed | Google Scholar

Published September 1, 1984 - More info

Published in Volume 74, Issue 3 on September 1, 1984
J Clin Invest. 1984;74(3):736–744. https://doi.org/10.1172/JCI111489.
© 1984 The American Society for Clinical Investigation
Published September 1, 1984 - Version history
View PDF
Abstract

We have identified two functional domains on the von Willebrand factor (VWF) moiety of the Factor VIII-von Willebrand factor complex (FVIII-VWF), one interacting with blood platelets, and one interacting with vessel wall collagens, by means of two monoclonal antibodies directed against the VWF molecule, CLB-RAg 35 and CLB-RAg 201. The monoclonal antibody CLB-RAg 35 inhibited virtually all platelet adherence to artery subendothelium and to purified vessel wall collagen type III, at relatively high wall shear rates. CLB-RAg 35 also inhibited the ristocetin-induced platelet aggregation and the binding of FVIII-VWF to the platelet in the presence of ristocetin but did not affect the binding of FVIII-VWF to collagen. The monoclonal antibody CLB-RAg 201 inhibited the binding of FVIII-VWF to purified vessel wall collagen type I and III and all platelet adherence to collagen type III and the platelet adherence to subendothelium that was mediated by FVIII-VWF in plasma. The two functional domains on FVIII-VWF that were recognized by CLB-RAg 35 and CLB-RAg 201 were identified by means of immunoprecipitation studies of trypsin-digested FVIII-VWF. The domains resided on different polypeptide fragments, with a Mr of 48,000 for the collagen binding domain and a Mr of 116,000 for the platelet binding domain. The 116,000-mol wt fragment consisted of subunits of 52,000/56,000 mol wt and 14,000 mol wt after reduction. The 52,000/56,000-mol wt subunits possessed the epitope for CLB-RAg 35.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 736
page 736
icon of scanned page 737
page 737
icon of scanned page 738
page 738
icon of scanned page 739
page 739
icon of scanned page 740
page 740
icon of scanned page 741
page 741
icon of scanned page 742
page 742
icon of scanned page 743
page 743
icon of scanned page 744
page 744
Version history
  • Version 1 (September 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts