Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111483

An ethanol/ether soluble apoprotein from rat lung surfactant augments liposome uptake by isolated granular pneumocytes.

W D Claypool, D L Wang, A Chander, and A B Fisher

Find articles by Claypool, W. in: PubMed | Google Scholar

Find articles by Wang, D. in: PubMed | Google Scholar

Find articles by Chander, A. in: PubMed | Google Scholar

Find articles by Fisher, A. in: PubMed | Google Scholar

Published September 1, 1984 - More info

Published in Volume 74, Issue 3 on September 1, 1984
J Clin Invest. 1984;74(3):677–684. https://doi.org/10.1172/JCI111483.
© 1984 The American Society for Clinical Investigation
Published September 1, 1984 - Version history
View PDF
Abstract

Ethanol/ether soluble apoproteins, comprising 17% of the total recovered surfactant-associated proteins, were isolated from rat lung surfactant and purified by silicic acid chromatography. The protein that eluted in 4:1 chloroform/methanol accounted for greater than 85% of protein in the ethanol/ether soluble fraction and was termed surfactant apoprotein Et (Apo Et). By sodium dodecyl sulfate polyacrylamide gel electrophoresis, this protein had an apparent molecular weight of approximately 10,500. Apo Et was evaluated for its effect on uptake of synthetic phospholipids in liposomal form by isolated granular pneumocytes (Type II alveolar epithelial cells) in primary culture. Liposomes were prepared to approximate the phospholipid composition of the alveolar surfactant, and uptake was measured by the accumulation of the radioactively labeled dipalmitoyl phosphatidyl choline fraction. The uptake of liposomal phosphatidylcholine by cells incubated for 2 h with Apo Et was increased by 61% over control. Most of the cell-associated phospholipid uptake was resistant to treatment with trypsin, suggesting an increased internalization of liposomal material in the presence of Apo Et. The effect of Apo Et on uptake was concentration and time dependent and was not associated with cell damage, phospholipase activity, or detergent properties of the protein. Apo Et had no significant effect on phosphatidylcholine uptake by granular pneumocytes maintained for 7 d in primary culture. Apo Et augmented the uptake of phospholipids by alveolar macrophages although total uptake by these cells was less than that observed with granular pneumocytes. Because Apo Et increases the rate of uptake of surfactant phospholipids by alveolar cells (granular pneumocytes and alveolar macrophages), this protein may represent a physiologically important regulator for clearance of lung surfactant phospholipids.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 677
page 677
icon of scanned page 678
page 678
icon of scanned page 679
page 679
icon of scanned page 680
page 680
icon of scanned page 681
page 681
icon of scanned page 682
page 682
icon of scanned page 683
page 683
icon of scanned page 684
page 684
Version history
  • Version 1 (September 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts