Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Localized reentry. Mechanism of induced sustained ventricular tachycardia in canine model of recent myocardial infarction.
H Garan, J N Ruskin
H Garan, J N Ruskin
Published August 1, 1984
Citation Information: J Clin Invest. 1984;74(2):377-392. https://doi.org/10.1172/JCI111433.
View: Text | PDF
Research Article

Localized reentry. Mechanism of induced sustained ventricular tachycardia in canine model of recent myocardial infarction.

  • Text
  • PDF
Abstract

This study was undertaken to investigate the mechanism underlying sustained monomorphic ventricular tachycardia (VT) in late experimental canine myocardial infarction. The hypothesis that sustained and "organized" continuous electrical activity (CEA) displaying a reproducible pattern with recurrent components recorded by bipolar endocardial, intramural, or epicardial electrodes in 10 animals during electrically induced sustained monomorphic VT represented reentrant excitation in an anatomically small area of the ventricle, was evaluated in the light of the following observations: Organized CEA always preceded the first monomorphic ventricular complex (QRS) of VT as well as the discrete local electrograms from closely surrounding sites during the initiation of VT. The site of organized CEA corresponded to the site of origin of sustained VT determined by iso-chronous contour map analysis of activation sequence. Ventricular pacing at rates more rapid than that of VT failed to terminate VT despite ventricular capture unless it transformed CEA into discrete local electrograms. VT could be terminated in three animals, with a single, critically timed premature stimulus delivered at a critically located focus close to the site of CEA, which would result in local capture and interrupted CEA. In six animals, surgical ablation of the site of organized CEA effectively prevented the reinitiation of sustained VT by programmed cardiac stimulation. These data showed that organized CEA and sustained VT were closely associated phenomena and suggested that organized CEA probably represented an important component of the tachycardia circuit.

Authors

H Garan, J N Ruskin

×

Full Text PDF | Download (2.48 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts