Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111348

Gastrin receptors on isolated canine parietal cells.

A H Soll, D A Amirian, L P Thomas, T J Reedy, and J D Elashoff

Find articles by Soll, A. in: JCI | PubMed | Google Scholar

Find articles by Amirian, D. in: JCI | PubMed | Google Scholar

Find articles by Thomas, L. in: JCI | PubMed | Google Scholar

Find articles by Reedy, T. in: JCI | PubMed | Google Scholar

Find articles by Elashoff, J. in: JCI | PubMed | Google Scholar

Published May 1, 1984 - More info

Published in Volume 73, Issue 5 on May 1, 1984
J Clin Invest. 1984;73(5):1434–1447. https://doi.org/10.1172/JCI111348.
© 1984 The American Society for Clinical Investigation
Published May 1, 1984 - Version history
View PDF
Abstract

The receptors in the fundic mucosa that mediate gastrin stimulation of acid secretion have been studied. Synthetic human gastrin-17-I (G17) with a leucine substitution in the 15th position ( [Leu15]-G17) was iodinated by chloramine T; high saturable binding was found to enzyme-dispersed canine fundic mucosal cells. 127I-[Leu15]-G17, but not 127I-G17, retained binding potency and biological activity comparable with uniodinated G17. Fundic mucosal cells were separated by size by using an elutriator rotor, and specific 125I-[Leu-15]-G17 binding in the larger cell fractions was highly correlated with the distribution of parietal cells. There was, however, specific gastrin binding in the small cell fractions, not accounted for by parietal cells. Using sequential elutriation and stepwise density gradients, highly enriched parietal and chief cell fractions were prepared; 125I-[Leu15]-G17 binding correlated positively with the parietal cell (r = 0.98) and negatively with chief cell content (r = -0.96). In fractions enriched to 45-65% parietal cells, specific 125I-[Leu15]-G17 binding was rapid, reaching a steady state at 37 degrees C within 30 min. Dissociation was also rapid, with the rate similar after 100-fold dilution or dilution plus excess pentagastrin. At a tracer concentration from 10 to 30 pM, saturable binding was 7.8 +/- 0.8% per 10(6) cells (mean +/- SE) and binding in the presence of excess pentagastrin accounted for 11% of total binding. G17 and carboxyl terminal octapeptide of cholecystokinin (26-33) were equipotent in displacing tracer binding and in stimulating parietal cell function ( [14C]aminopyrine accumulation), whereas the tetrapeptide of gastrin (14-17) had a much lower potency. Proglumide inhibited gastrin binding and selectively inhibited gastrin stimulation of parietal cell function. Canine parietal cells have specific receptors for gastrin that mediate stimulation of parietal cell function. Gastrin receptors were undetectable on chief cells, and yet present on another smaller mucosal cell(s).

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1434
page 1434
icon of scanned page 1435
page 1435
icon of scanned page 1436
page 1436
icon of scanned page 1437
page 1437
icon of scanned page 1438
page 1438
icon of scanned page 1439
page 1439
icon of scanned page 1440
page 1440
icon of scanned page 1441
page 1441
icon of scanned page 1442
page 1442
icon of scanned page 1443
page 1443
icon of scanned page 1444
page 1444
icon of scanned page 1445
page 1445
icon of scanned page 1446
page 1446
icon of scanned page 1447
page 1447
Version history
  • Version 1 (May 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts