Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111303

Proteases and oxidants in experimental pulmonary inflammatory injury.

I U Schraufstätter, S D Revak, and C G Cochrane

Find articles by Schraufstätter, I. in: PubMed | Google Scholar

Find articles by Revak, S. in: PubMed | Google Scholar

Find articles by Cochrane, C. in: PubMed | Google Scholar

Published April 1, 1984 - More info

Published in Volume 73, Issue 4 on April 1, 1984
J Clin Invest. 1984;73(4):1175–1184. https://doi.org/10.1172/JCI111303.
© 1984 The American Society for Clinical Investigation
Published April 1, 1984 - Version history
View PDF
Abstract

We have examined various biochemical parameters of pulmonary inflammation in experimental animals. Intrabronchial instillation of glucose oxidase-glucose (GO/G) to produce oxidants or formylated norleu-leu-phe (FNLP) or phorbol myristate acetate (PMA) as leukocytic stimuli induced severe acute pulmonary injury in New Zealand white rabbits. PMA also induced inflammation when administered intravenously. Each stimulus induced transudation of protein from the vascular space into the pulmonary tissues, and an influx of leukocytes during the 4-6 h period of the experiment. Pathophysiologic changes were measured by edema formation (transudation of 125I-bovine serum albumin), and histologic examination. Biochemical analysis was performed by measuring concentrations of potentially injurious agents in bronchoalveolar lavage (BAL) fluid. Increased acid protease and myeloperoxidase levels were found in the BAL fluid after administration of either of the stimuli. Evidence of oxidant generation in vivo was obtained in two different ways. In the first, specific activities for catalase were measured in the BAL fluid in the presence or absence of 3-amino, 1,2,4 triazole (AT), injected at intervals before obtaining BAL fluid. In the presence of AT, specific activities for catalase dropped to 0.22 after a double instillation of FNLP and to 0.15 in the presence of GO/G. In neutrophil-depleted FNLP animals, catalase was not greatly inhibited by AT (sp act 0.90). In the second, intracellular levels of total glutathione (GSH + GSSG) in whole lung tissue and alveolar macrophages decreased when stimuli of neutrophils were administered. Intrabronchially instilled PMA, e.g., caused a drop of glutathione in whole lung tissue from the control value of 2.3 mumol GSH equivalent/100 mg dry wt to 0.54 mumol GSH equivalent/100 mg dry wt at 4 h. Neutrophil depletion and superoxide dismutase protected from this effect. From these results, we conclude that O-2 or its metabolites can initiate severe pulmonary injury as shown by the effect of GO/G and that, during development of pulmonary injury, stimulated neutrophils generate oxidants and release proteolytic enzymes into the surrounding tissues.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1175
page 1175
icon of scanned page 1176
page 1176
icon of scanned page 1177
page 1177
icon of scanned page 1178
page 1178
icon of scanned page 1179
page 1179
icon of scanned page 1180
page 1180
icon of scanned page 1181
page 1181
icon of scanned page 1182
page 1182
icon of scanned page 1183
page 1183
icon of scanned page 1184
page 1184
Version history
  • Version 1 (April 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts