Abstract

Extracellular Ca2+ is required for platelet aggregation and secretion in response to ADP or epinephrine. Recently, we reported that the platelet surface contains two classes of high affinity binding sites for extracellular Ca2+. To identify these sites and clarify their role in platelet function, we have now (a) studied platelets congenitally deficient in surface membrane glycoproteins and (b) examined the effect of removing surface-bound Ca2+ on platelet responses to ADP and epinephrine. Unstimulated normal platelets contained 86,000 Ca2+-binding sites/platelet with a dissociation constant (Kd) of 9 nM and 389,000 sites with a Kd of 400 nM. In contrast, thrombasthenic platelets, which lack glycoproteins IIb and IIIa, exhibited a 92% reduction in the number of higher affinity Ca2+-binding sites and a 63% reduction in the number of lower affinity sites. Bernard-Soulier platelets, which lack glycoprotein Ib, were not deficient in Ca2+-binding sites. After stimulation with ADP, both normal and thrombasthenic platelets developed approximately 138,000 new Ca2+-binding sites/platelet (Kd = 400 nM), while the larger Bernard-Soulier platelets developed 216,000 new sites. These data suggest that IIb and IIIa represent the major Ca2+-binding glycoproteins on unstimulated platelets, while neither these glycoproteins nor Ib represent the new Ca2+-binding sites on stimulated platelets. Removal of Ca2+ from the platelet surface inhibited platelet function. Despite the presence of 1 mM Mg2+, ADP- and epinephrine-induced aggregation and [14C]serotonin release were markedly decreased at free Ca2+ concentrations less than 7 nM, a value similar to the Kd of the higher affinity Ca2+-binding sites. Moreover, gadolinium, a lanthanide that competed for these Ca2+-binding sites, also inhibited aggregation and serotonin release. These studies demonstrate, therefore, that the binding of extracellular Ca2+ to glycoproteins IIb/IIIa on unstimulated platelets or to additional membrane proteins on stimulated platelets is necessary for maximal platelet responses to ADP and epinephrine. Thus, the requirement for extracellular Ca2+ during platelet activation by these agonists may actually represent a requirement for surface-bound Ca2+.

Authors

L F Brass, S J Shattil

×

Other pages: