Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
In vitro enhancement of immunoglobulin gene expression in chronic lymphocytic leukemia.
J Cossman, … , S J Korsmeyer, A Bakhshi
J Cossman, … , S J Korsmeyer, A Bakhshi
Published February 1, 1984
Citation Information: J Clin Invest. 1984;73(2):587-592. https://doi.org/10.1172/JCI111247.
View: Text | PDF
Research Article

In vitro enhancement of immunoglobulin gene expression in chronic lymphocytic leukemia.

  • Text
  • PDF
Abstract

B cell chronic lymphocytic leukemia (CLL) cells appear to be arrested in their differentiation so that little immunoglobulin is secreted in most cases. To determine their capacity for further differentiation we stimulated cells from a series of 10 cases of CLL with a phorbol ester and assayed for production of immunoglobulin protein, accumulation of immunoglobulin mRNA, and alterations in cell surface markers. We found that cells from all cases were induced to secret monoclonal immunoglobulin of the same heavy and light chain type as the surface membrane immunoglobulin type. Immunoglobulin secretion was preceded by a rapid increase in the levels of mRNA coding for IgM, predominantly the secretory form, mu s-mRNA, rather than the membrane form, mu m-mRNA. A similar selection of mu s- over mu m-mRNA is known to occur in plasma cells by a mechanism of differential processing of mRNA from a single mu-chain gene. Except for a decline in the expression of surface IgD, cell surface determinants remained unaffected both in terms of the percentage of positive cells and the relative number of sites per cell. In contrast to previous studies, these results indicate that CLL cells consistently retain the capacity to further differentiate toward plasma cells and secrete immunoglobulin. The immunoglobulin secretion is mediated, at least in part, by a developmentally regulated increment in mu s-mRNA.

Authors

J Cossman, L M Neckers, R M Braziel, J B Trepel, S J Korsmeyer, A Bakhshi

×

Full Text PDF | Download (956.06 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts