Inactive renin comprises well over half the total renin in normal human plasma. There is a direct relationship between active and inactive renin levels in normal and hypertensive populations, but the proportion of inactive renin varies inversely with the active renin level; as much as 98% of plasma renin is inactive in patients with low renin, whereas the proportion is consistently lower (usually 20-60%) in high-renin states. Two hypertensive patients with proven renin-secreting carcinomas of non-renal origin (pancreas and ovary) had high plasma active renin (119 and 138 ng/h per ml) and the highest inactive renin levels we have ever observed (5,200 and 14,300 ng/h per ml; normal range 3-50). The proportion of inactive renin (98-99%) far exceeded that found in other patients with high active renin levels. A third hypertensive patient with a probable renin-secreting ovarian carcinoma exhibited a similar pattern. Inactive renins isolated from plasma and tumors of these patients were biochemically similar to semipurified inactive renins from normal plasma or cadaver kidney. All were bound by Cibacron Blue-agarose, were not retained by pepstatin-Sepharose, and had greater apparent molecular weights (Mr) than the corresponding active forms. Plasma and tumor inactive renins from the three patients were similar in size (Mr 52,000-54,000), whereas normal plasma inactive renin had a slightly larger Mr than that from kidney (56,000 vs. 50,000). Inactive renin from each source was activated irreversibly by trypsin and reversibly by dialysis to pH 3.3 at 4 degrees C; the reversal process followed the kinetics of a first-order reaction in each instance. The trypsin-activated inactive renins were all identical to semipurified active renal renin in terms of pH optimum (pH 5.5-6.0) and kinetics with homologous angiotensinogen (Michaelis constants, 0.8-1.3 microM) and inhibition by pepstatin or by serial dilutions of renin-specific antibody. These results indicate that a markedly elevated plasma inactive renin level distinguishes patients with ectopic renin production from other high-renin hypertensive states. The co-production of inactive and active renin by extrarenal neoplasms provides strong presumptive evidence that inactive renin is a biosynthetic precursor of active renin. The unusually high proportion of inactive renin in plasma and tumor extracts from such patients is consistent with ineffective precursor processing by neoplastic tissue, suggesting that if activation of "prorenin" is involved in the normal regulation of active renin levels it more likely occurs in the tissue of origin (e.g., kidney) than in the circulation.
S A Atlas, T E Hesson, J E Sealey, B Dharmgrongartama, J H Laragh, M C Ruddy, M Aurell
Usage data is cumulative from December 2024 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 148 | 6 |
| 69 | 3 | |
| Scanned page | 409 | 0 |
| Citation downloads | 60 | 0 |
| Totals | 686 | 9 |
| Total Views | 695 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.