Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111216

Systemic circulatory adjustments to acute hypoxia and reoxygenation in unanesthetized sheep. Role of renin, angiotensin II, and catecholamine interactions.

D Davidson and S A Stalcup

Find articles by Davidson, D. in: JCI | PubMed | Google Scholar

Find articles by Stalcup, S. in: JCI | PubMed | Google Scholar

Published February 1, 1984 - More info

Published in Volume 73, Issue 2 on February 1, 1984
J Clin Invest. 1984;73(2):317–328. https://doi.org/10.1172/JCI111216.
© 1984 The American Society for Clinical Investigation
Published February 1, 1984 - Version history
View PDF
Abstract

The hemodynamic consequences of the hypoxic inhibition of angiotensin-converting enzyme activity were studied in chronically instrumented unanesthetized sheep (n = 8) breathing a hypoxic gas mixture for 60 min (PaO2 = 31 mm Hg) followed by reoxygenation with room air. Changes in cardiac output, vascular pressures, blood flow distribution, arterial pH, PaCO2, PaO2, and arterial levels of plasma renin activity, angiotensin II, bradykinin, and catecholamines were measured at selected time points. Seven additional sheep underwent the same protocol but received saralasin, an angiotensin II receptor blocker beginning at 55 min of hypoxia and extending into the reoxygenation period. During hypoxia, both groups developed identical hemodynamic patterns including a rise in cardiac output (25%), blood pressure (15%), and preferential blood flow distribution to the heart, brain, adrenals, diaphragm, and skeletal muscle, as well as a decrease in the fraction of cardiac output to the kidneys and most of the gut. This was associated with a decrease in angiotensin II concentrations (from 35 to 17 pg/ml) in spite of a doubling in plasma renin activity and catecholamines. Bradykinin levels did not change. Upon reoxygenation, bolus production of angiotensin II (from 17 to 1,819 pg/ml) occurred in spite of a constant level of plasma renin activity. Concurrently, different hemodynamic patterns between control and saralasin groups emerged upon reoxygenation, including an elevation from base line in blood pressure and systemic vascular resistance in the control group. Cardiac work (heart-rate systolic pressure product) in the control group remained elevated upon reoxygenation while coronary blood flow returned to base-line values. Saralasin reduced cardiac work upon reoxygenation and restored the match between coronary blood flow and work. We conclude that plasma renin activity and oxygen tension together govern angiotensin II levels for an optimal level of systemic vasomotor tone during hypoxia. However, upon reoxygenation, bolus production of angiotensin II may result in pathophysiologic circulatory patterns, such as impairment in oxygen delivery to the myocardium proportional to persistently elevated cardiac work in the immediate postresuscitation period.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 317
page 317
icon of scanned page 318
page 318
icon of scanned page 319
page 319
icon of scanned page 320
page 320
icon of scanned page 321
page 321
icon of scanned page 322
page 322
icon of scanned page 323
page 323
icon of scanned page 324
page 324
icon of scanned page 325
page 325
icon of scanned page 326
page 326
icon of scanned page 327
page 327
icon of scanned page 328
page 328
Version history
  • Version 1 (February 1, 1984): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts