Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Proton transport and cell function.
H E Ives, F C Rector Jr
H E Ives, F C Rector Jr
Published February 1, 1984
Citation Information: J Clin Invest. 1984;73(2):285-290. https://doi.org/10.1172/JCI111212.
View: Text | PDF
Research Article

Proton transport and cell function.

  • Text
  • PDF
Abstract

The past five years have witnessed an explosion of information on the many and varied roles of H+ transport in cell function. H+ transport is involved in three broad areas of cell function: (a) maintenance and alteration of intracellular pH for initiation of specific cellular events, (b) generation of pH gradients in localized regions of the cell, including gradients involved in energy transduction, and (c) transepithelial ion transport. These processes each involve one or more of several H+ translocating mechanisms. The first section of this review will discuss these H+ translocating mechanisms and the second part will deal with the cellular functions controlled by H+ transport.

Authors

H E Ives, F C Rector Jr

×

Full Text PDF

Download PDF (1007.54 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts