Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111177

Investigation of tubular handling of bicarbonate in man. A new approach utilizing stable carbon isotope fractionation.

Z H Burbea, B Luz, B Lazar, J Winaver, and O S Better

Find articles by Burbea, Z. in: PubMed | Google Scholar

Find articles by Luz, B. in: PubMed | Google Scholar

Find articles by Lazar, B. in: PubMed | Google Scholar

Find articles by Winaver, J. in: PubMed | Google Scholar

Find articles by Better, O. in: PubMed | Google Scholar

Published December 1, 1983 - More info

Published in Volume 72, Issue 6 on December 1, 1983
J Clin Invest. 1983;72(6):2125–2136. https://doi.org/10.1172/JCI111177.
© 1983 The American Society for Clinical Investigation
Published December 1, 1983 - Version history
View PDF
Abstract

Two alternative mechanisms have been proposed for tubular reabsorption of bicarbonate: (a) H+ secretion and CO2 reabsorption and (b) direct reabsorption of HCO-3. In an attempt to differentiate between the two mechanisms, the present study utilized the natural abundance of stable carbon isotopes (13C, 12C) in the urinary total CO2. This novel methodology used mass spectrometric analysis of 13C/12C ratios in urinary total CO2 under normal conditions and during acetazolamide treatment. Blood and respiratory CO2 were analyzed to yield reference values. The results demonstrate that alkaline urine is preferentially enriched with 13C relative to the blood. It is suggested that this fractionation results from reaction out of isotopic equilibrium in which HCO-3 converts to CO2 during the reabsorption process in the distal nephron. The presence of carbonic anhydrase in the proximal nephron results in rapid isotopic exchange between CO2 and HCO-3 and keeps them in isotopic equilibrium. The ratio of urinary 13C/12C increases strikingly after acetazolamide administration and consequent inhibition of carbonic anhydrase in the proximal tubule. Although it is possible that in the latter case high HCO-3 generates the CO2 (ampholyte effect), the isotope fractionation indicates that CO2 rather than HCO-3 is reabsorbed. In contrast, at low urinary pH and total CO2 values, the carbon isotope composition approaches that of blood CO2. This indicates rapid CO2 exchange between urine and blood, through luminal membrane highly permeable to CO2. These results could be anticipated by a mathematical model constructed to plot 13C concentration of urinary total CO2. It is concluded that the mechanism of HCO-3 reclamation in man (and, by inference, in other mammals as well) works by conversion of HCO-3 to CO2 and reabsorption of CO2.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2125
page 2125
icon of scanned page 2126
page 2126
icon of scanned page 2127
page 2127
icon of scanned page 2128
page 2128
icon of scanned page 2129
page 2129
icon of scanned page 2130
page 2130
icon of scanned page 2131
page 2131
icon of scanned page 2132
page 2132
icon of scanned page 2133
page 2133
icon of scanned page 2134
page 2134
icon of scanned page 2135
page 2135
icon of scanned page 2136
page 2136
Version history
  • Version 1 (December 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts