Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111171

Functional heterogeneities among concanavalin A-activated OKT4+ and OKT8+ cells by using autologous erythrocyte rosette technique.

S Takada, Y Ueda, Y Murakawa, N Suzuki, and T Sakane

Find articles by Takada, S. in: PubMed | Google Scholar

Find articles by Ueda, Y. in: PubMed | Google Scholar

Find articles by Murakawa, Y. in: PubMed | Google Scholar

Find articles by Suzuki, N. in: PubMed | Google Scholar

Find articles by Sakane, T. in: PubMed | Google Scholar

Published December 1, 1983 - More info

Published in Volume 72, Issue 6 on December 1, 1983
J Clin Invest. 1983;72(6):2060–2071. https://doi.org/10.1172/JCI111171.
© 1983 The American Society for Clinical Investigation
Published December 1, 1983 - Version history
View PDF
Abstract

Normal human peripheral blood T lymphocytes activated by concanavalin A (Con A) were fractionated into OKT4+ and OKT8+ populations by complement-dependent cell lysis using OKT8 and OKT4 antibodies, respectively. By using the preferential ability of some, but not all, Con A-activated T cells to form rosettes with autologous erythrocytes, each population was further divided into autorosetting cells and nonautorosetting cells, and thus Con A-activated OKT4+ autorosetting, OKT4+ nonautorosetting, OKT8+ autorosetting, and OKT8+ nonautorosetting cells were obtained. The immune regulatory function of these populations was then investigated using a pokeweed mitogen-driven B cell plaque-forming cell system. These studies demonstrated that (a) autorosetting cells can exert potent suppressor activity regardless of their phenotypes of OKT4+ and OKT8+ antigens, and fail to help B cell differentiation; suppressor function mediated by these cells is radiosensitive; moreover, receptors for autologous erythrocytes may constitute either the interleukin 2 (IL2) receptors themselves or a component of an IL2 receptor-effector complex involved in modulating the growth signal that IL2 transmits to T cells; (b) OKT4+ nonrosetting cells serve adequately as radioresistant helper cells, but are devoid of suppressor cells; and (c) OKT8+ nonrosetting cells are found to lack either suppressor or helper activity, suggesting that they may belong to a T lymphocyte subset distinct from the subsets related to immune regulation. The results lead us, therefore, to the conclusion that there may exist functional heterogeneities among both the OKT4+ and OKT8+ populations; these heterogeneities can be dissected by virtue of the autologous erythrocyte rosette technique.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2060
page 2060
icon of scanned page 2061
page 2061
icon of scanned page 2062
page 2062
icon of scanned page 2063
page 2063
icon of scanned page 2064
page 2064
icon of scanned page 2065
page 2065
icon of scanned page 2066
page 2066
icon of scanned page 2067
page 2067
icon of scanned page 2068
page 2068
icon of scanned page 2069
page 2069
icon of scanned page 2070
page 2070
icon of scanned page 2071
page 2071
Version history
  • Version 1 (December 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts