Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111065

Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation.

N Viires, G Sillye, M Aubier, A Rassidakis, and C Roussos

Find articles by Viires, N. in: PubMed | Google Scholar

Find articles by Sillye, G. in: PubMed | Google Scholar

Find articles by Aubier, M. in: PubMed | Google Scholar

Find articles by Rassidakis, A. in: PubMed | Google Scholar

Find articles by Roussos, C. in: PubMed | Google Scholar

Published September 1, 1983 - More info

Published in Volume 72, Issue 3 on September 1, 1983
J Clin Invest. 1983;72(3):935–947. https://doi.org/10.1172/JCI111065.
© 1983 The American Society for Clinical Investigation
Published September 1, 1983 - Version history
View PDF
Abstract

Respiratory muscle blood flow and organ blood flow was studied in two groups of dogs with radioactively labeled microspheres to assess the influence of the working respiratory muscles on the regional distribution of blood flow when arterial pressure and cardiac output were lowered by pericardial tamponade. In one group (n = 6), the dogs were paralyzed and mechanically ventilated (Mv), while in the other (n = 6), they were left to breathe spontaneously (Sb). Cardiac output fell to 30% of control values during tamponade in both groups and was maintained constant. None of the dogs was hypoxic. Ventilation in the Sb group peaked after 50 min of hypotension, but remained unchanged in the Mv group. Duplicate measurements of blood flow were made during a control period and after 50 min of tamponade (corresponding to the peak ventilation in Sb). Blood flow to the respiratory muscles increased significantly (P less than 0.001) during tamponade in Sb (diaphragmatic flow increased to 361% of control values), while it decreased in Mv. Although the arterial blood pressure and cardiac output were comparable in the two groups, blood flow distribution during tamponade was different. In Sb, the respiratory muscles received 21% of the cardiac output, compared with only 3% in the Mv group. Thus, by muscle paralysis and Mv, a large fraction of the cardiac output used by the working respiratory muscles can be made available for perfusion of other organs during low cardiac output state: blood flows to the liver, brain, and quadriceps muscles were significantly higher during tamponade in the Mv group compared with the Sb group. Similarly, blood lactate at all times after the induction of low cardiac output and hypotension was significantly lower in the Mv animals (P less than 0.005).

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 935
page 935
icon of scanned page 936
page 936
icon of scanned page 937
page 937
icon of scanned page 938
page 938
icon of scanned page 939
page 939
icon of scanned page 940
page 940
icon of scanned page 941
page 941
icon of scanned page 942
page 942
icon of scanned page 943
page 943
icon of scanned page 944
page 944
icon of scanned page 945
page 945
icon of scanned page 946
page 946
icon of scanned page 947
page 947
Version history
  • Version 1 (September 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts