Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111034

Characterization of a human blood monocyte subset with low peroxidase activity.

Y Akiyama, P J Miller, G B Thurman, R H Neubauer, C Oliver, T Favilla, J A Beman, R K Oldham, and H C Stevenson

Find articles by Akiyama, Y. in: PubMed | Google Scholar

Find articles by Miller, P. in: PubMed | Google Scholar

Find articles by Thurman, G. in: PubMed | Google Scholar

Find articles by Neubauer, R. in: PubMed | Google Scholar

Find articles by Oliver, C. in: PubMed | Google Scholar

Find articles by Favilla, T. in: PubMed | Google Scholar

Find articles by Beman, J. in: PubMed | Google Scholar

Find articles by Oldham, R. in: PubMed | Google Scholar

Find articles by Stevenson, H. in: PubMed | Google Scholar

Published September 1, 1983 - More info

Published in Volume 72, Issue 3 on September 1, 1983
J Clin Invest. 1983;72(3):1093–1105. https://doi.org/10.1172/JCI111034.
© 1983 The American Society for Clinical Investigation
Published September 1, 1983 - Version history
View PDF
Abstract

Two human monocyte subsets from the peripheral blood of healthy donors have been isolated in greater than 90% purity by countercurrent centrifugal elutration and human serum albumin gradients and their functional capabilities have been assessed. We have demonstrated that one subset ("regular" monocytes, RM) showed intense cytoplasmic peroxidase staining and contained substantial peroxidase activity. In contrast, another subset ("intermediate" monocytes, IM) stained poorly for peroxidase and had low peroxidase activity. By electron microscopic analysis combined with peroxidase localization, it was found that IM had fewer peroxidase-positive granules per cell than did RM. IM coelutriated with some lymphocytes and by cell sizing analysis were shown to be slightly smaller than RM. Functional and cytochemical analysis of these subsets indicated that IM had less activity than RM in assays such as accessory cell function for mitogen-induced T lymphocyte proliferation and antibody-dependent cellular cytotoxicity, and that fewer IM expressed OKM1 antigen and pokeweed mitogen (PWM) receptors on their membranes than did RM. The subset of IM not bearing either the PWM receptor or the OKM1 antigen had very low peroxidase activity. IM also were found to have a greater sensitivity to polyriboinosinic and polyribocytidilic acid (100 micrograms/ml)-induced secretion of interferon. There was no significant difference in the phagocytic capability, the percentage of Fc receptor-positive cells, 5'-nucleotidase activity, DR antigen expression, or the responsiveness to migration inhibitory factor of IM as compared with RM. Furthermore, it was found that the ratio of IM to RM increased after prolonged cytapheresis, which suggests that IM are more mobilizable than RM from the extravascular reservoirs of human monocytes.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1093
page 1093
icon of scanned page 1094
page 1094
icon of scanned page 1095
page 1095
icon of scanned page 1096
page 1096
icon of scanned page 1097
page 1097
icon of scanned page 1098
page 1098
icon of scanned page 1099
page 1099
icon of scanned page 1100
page 1100
icon of scanned page 1101
page 1101
icon of scanned page 1102
page 1102
icon of scanned page 1103
page 1103
icon of scanned page 1104
page 1104
icon of scanned page 1105
page 1105
Version history
  • Version 1 (September 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts