Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111031

Altered myoelectric activity in the experimental blind loop syndrome.

P G Justus, A Fernandez, J L Martin, C E King, P P Toskes, and J R Mathias

Find articles by Justus, P. in: PubMed | Google Scholar

Find articles by Fernandez, A. in: PubMed | Google Scholar

Find articles by Martin, J. in: PubMed | Google Scholar

Find articles by King, C. in: PubMed | Google Scholar

Find articles by Toskes, P. in: PubMed | Google Scholar

Find articles by Mathias, J. in: PubMed | Google Scholar

Published September 1, 1983 - More info

Published in Volume 72, Issue 3 on September 1, 1983
J Clin Invest. 1983;72(3):1064–1071. https://doi.org/10.1172/JCI111031.
© 1983 The American Society for Clinical Investigation
Published September 1, 1983 - Version history
View PDF
Abstract

Nutrient malabsorption and diarrhea are characteristic of the blind loop syndrome. Alterations in motility have been implicated as a cause of bacterial overgrowth, but the possibility that altered motility may result from alterations in the flora has not been explored. The purpose of this study was to characterize the myoelectric activity of the small intestine in the blind loop rat model. Eight groups of rats were studied: rats with self-filling blind loops, which develop bacterial overgrowth; rats with self-emptying blind loops, which are surgical controls that do not develop overgrowth; unoperated litter mates; rats with self-filling blind loops and unoperated controls treated with chloramphenicol, 200 mg/d i.p.; rats with surgically removed self-filling blind loops; operated control rats; and gnotobiotic rats with self-filling blind loops. In the untreated rats with self-filling blind loops, there was altered myoelectric activity characterized by an increased percentage of slow waves occupied by action potentials and by organized activity similar to the migrating action potential complex. Migrating action potential complex activity and percentage of slow waves occupied by action potentials were significantly decreased with chloramphenicol therapy; that decrease correlated with a decrease in aerobes and anaerobes. Migrating action potential complex activity was abolished in rats with surgically removed self-filling blind loops; they also showed a significant decrease in percentage of slow waves occupied by action potentials. Gnotobiotic rats with self-filling blind loops showed no alteration in myoelectric activity. These data indicate: (a) bacterial overgrowth is associated with a significant increase in percentage of slow waves occupied by action potentials and migrating action potential complex activity; (b) chloramphenicol significantly reduced both percentage of slow waves occupied by action potentials and migrating action potential complex activity; and (c) surgical removal of the loop reduced the alterations in motor function. This study suggests that the altered myoelectric activity in this model of bacterial overgrowth was due, in part, to the abnormal bacterial flora and supports the concept that alterations in motility may contribute to the diarrhea that is characteristic of the blind loop syndrome.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1064
page 1064
icon of scanned page 1065
page 1065
icon of scanned page 1066
page 1066
icon of scanned page 1067
page 1067
icon of scanned page 1068
page 1068
icon of scanned page 1069
page 1069
icon of scanned page 1070
page 1070
icon of scanned page 1071
page 1071
Version history
  • Version 1 (September 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts