Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation.
D A Greene, S A Lattimer
D A Greene, S A Lattimer
Published September 1, 1983
Citation Information: J Clin Invest. 1983;72(3):1058-1063. https://doi.org/10.1172/JCI111030.
View: Text | PDF
Research Article

Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation.

  • Text
  • PDF
Abstract

Nerve conduction impairment in experimental diabetes has been empirically but not mechanistically linked to altered nerve myo-inositol metabolism. The phospholipid-dependent membrane-bound sodium-potassium ATPase provides a potential mechanism to relate defects in diabetic peripheral nerve myo-inositol-phospholipid metabolism, impulse conduction, and energy utilization. Therefore, the effect of streptozocin-induced diabetes mellitus and dietary myo-inositol supplementation on rat sciatic nerve sodium-potassium ATPase was studied. ATPase activity was measured enzymatically in sciatic nerve homogenates from 4-wk streptozocin diabetic rats and age-matched controls either fed a standard or 1% myo-inositol supplemented diet. The sodium-potassium ATPase components were assessed by ouabain inhibition or the omission of sodium and potassium ions. Diabetes reduced the composite ATPase activity recovered in crude homogenates of sciatic nerve. The 40% reduction in the sodium-potassium ATPase was selectively prevented by 1% myo-inositol supplementation (which preserved normal nerve conduction). Thus, in diabetic peripheral nerve, abnormal myo-inositol metabolism is associated with abnormal sodium-potassium ATPase activity. The mechanism of the effect of dietary myo-inositol to correct diabetic nerve conduction may be through changes in a sodium-potassium ATPase, possibly via changes in myo-inositol-containing phospholipids.

Authors

D A Greene, S A Lattimer

×

Full Text PDF

Download PDF (1.03 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts