Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Muscle phosphofructokinase deficiency. Biochemical and immunological studies of phosphofructokinase isozymes in muscle culture.
M Davidson, … , S DiMauro, S Vora
M Davidson, … , S DiMauro, S Vora
Published August 1, 1983
Citation Information: J Clin Invest. 1983;72(2):545-550. https://doi.org/10.1172/JCI111002.
View: Text | PDF
Research Article

Muscle phosphofructokinase deficiency. Biochemical and immunological studies of phosphofructokinase isozymes in muscle culture.

  • Text
  • PDF
Abstract

Muscle cultures from three unrelated patients with muscle phosphofructokinase (PFK; EC 2.7.1.11) deficiency (Glycogenosis type VII; Tarui disease) had normal PFK activity and normal morphology. Chromatographic and immunological studies showed that normal muscle cultures express all three PFK subunits, M (muscle-type), L (liver-type), and P (platelet-type) and contain multiple homotetrameric and heterotetrameric isozymes. Muscle cultures from patients lack catalytically active M subunit-containing isozymes, but this is compensated for by the presence of P- and L-containing isozymes. Despite the lack of muscle-type PFK activity, presence of immunoreactive M subunit was demonstrable by indirect immunofluorescence, suggesting a mutation of the structural gene coding for the M-subunit of PFK.

Authors

M Davidson, A F Miranda, A N Bender, S DiMauro, S Vora

×

Full Text PDF | Download (1.29 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts