Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111001

Early membrane damage during coronary reperfusion in dogs. Detection by radiolabeled anticardiac myosin (Fab')2.

L H Frame, J A Lopez, B A Khaw, J T Fallon, E Haber, and W J Powell Jr

Find articles by Frame, L. in: JCI | PubMed | Google Scholar

Find articles by Lopez, J. in: JCI | PubMed | Google Scholar

Find articles by Khaw, B. in: JCI | PubMed | Google Scholar

Find articles by Fallon, J. in: JCI | PubMed | Google Scholar

Find articles by Haber, E. in: JCI | PubMed | Google Scholar

Find articles by Powell, W. in: JCI | PubMed | Google Scholar

Published August 1, 1983 - More info

Published in Volume 72, Issue 2 on August 1, 1983
J Clin Invest. 1983;72(2):535–544. https://doi.org/10.1172/JCI111001.
© 1983 The American Society for Clinical Investigation
Published August 1, 1983 - Version history
View PDF
Abstract

There is currently great interest in acute coronary reperfusion as a therapeutic modality for severe myocardial ischemia. While some studies have demonstrated a reduction in the overall extent of necrosis by early reperfusion, other studies have identified potentially deleterious effects produced by reflow. Because membrane disruption may be an important mechanism of irreversible cell injury, we measured changes in cell membrane integrity early during reperfusion using radiolabeled anticardiac myosin (Fab')2 antibody fragments in dogs. Our method involved brief periods of exposure to the (Fab')2 so that the levels of (Fab')2 binding indicated the degree of membrane disruption at discrete times during the progression of cell injury. In the first protocol (Fab')2 fragments labeled with either 125I and 131I were injected into the left circumflex coronary artery at the onset of reflow and at 45 min of reflow after a 1-h circumflex artery occlusion. Coronary sinus flow was diverted for 5 min following each injection to prevent recirculation. The (Fab')2 binding ratio (ischemic/control) increased during the first 45 min of reflow in each of eight experiments (mean increase 170%, P less than 0.01). No significant increase in (Fab')2 binding was observed in five additional experiments in which nonspecific (Fab')2 was injected. This indicates that the increase in binding seen with antimyosin-specific (Fab')2 was due to changes in specific binding rather than to alterations in (Fab')2 delivery produced by changes in blood flow distribution. The increase in membrane damage during reflow was confirmed by a second protocol in which each animal received only a single left atrial injection of (Fab')2 followed by rapid excision of the heart. The (Fab')2 binding ratio was 1.7 +/- 0.3 (SEM) in the group that received (Fab')2 at the onset of reflow and 3.7 +/- 0.6 (SEM) (P less than 0.05) in the group that received (Fab')2 after 45 min of reflow. In a third set of experiments in which hyperosmotic mannitol was infused during reflow the mean increase in (Fab')2 binding using the first protocol was only 80 +/- 40 vs. 170 +/- 30% without mannitol (P less than 0.05). Thus, membrane damage develops early during coronary reperfusion following 1 h of circumflex coronary artery occlusion, and part of this membrane damage can be prevented by altering the conditions of reflow. A method involving brief exposure of the myocardium to antimyosin (Fab')2 is promising for detecting changes in membrane integrity during evolving ischemic injury.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 535
page 535
icon of scanned page 536
page 536
icon of scanned page 537
page 537
icon of scanned page 538
page 538
icon of scanned page 539
page 539
icon of scanned page 540
page 540
icon of scanned page 541
page 541
icon of scanned page 542
page 542
icon of scanned page 543
page 543
icon of scanned page 544
page 544
Version history
  • Version 1 (August 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts