Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Angiotensin II-induced hypertension in the rat. Effects on the plasma concentration, renal excretion, and tissue release of prostaglandins.
D I Diz, … , P G Baer, A Nasjletti
D I Diz, … , P G Baer, A Nasjletti
Published August 1, 1983
Citation Information: J Clin Invest. 1983;72(2):466-477. https://doi.org/10.1172/JCI110994.
View: Text | PDF
Research Article

Angiotensin II-induced hypertension in the rat. Effects on the plasma concentration, renal excretion, and tissue release of prostaglandins.

  • Text
  • PDF
Abstract

We examined in rats the effects of intraperitoneal angiotensin II (AII) infusion for 12 d on urinary excretion, plasma concentration, and in vitro release of prostaglandin (PG) E2 and 6-keto-PGF1 alpha, a PGI2 metabolite. AII at 200 ng/min increased systolic blood pressure (SBP) progressively from 125 +/- 3 to 170 +/- 9 mmHg (P less than 0.01) and elevated fluid intake and urine volume. Urinary 6-keto-PGF1 alpha excretion increased from 38 +/- 6 to 55 +/- 5 and 51 +/- 7 ng/d (P less than 0.05) on days 8 and 11, respectively, of AII infusion, but urinary PGE2 excretion did not change. Relative to a control value of 129 +/- 12 pg/ml in vehicle-infused (V) rats, arterial plasma 6-keto-PGF1 alpha concentration increased by 133% (P less than 0.01) with AII infusion. Aortic rings from AII-infused rats released more 6-keto-PGF1 alpha (68 +/- 7 ng/mg) during 15-min incubation in Krebs solution than did rings from V rats (40 +/- 3 ng/mg); release of PGE2, which was less than 1% of that of 6-keto-PGF1 alpha, was also increased. Slices of inner renal medulla from AII-infused rats released more 6-keto-PGF1 alpha (14 +/- 1 ng/mg) during incubation than did slices from V rats (8 +/- 1 ng/mg, P less than 0.05), but PGE2 release was not altered. In contrast, AII infusion did not alter release of 6-keto-PGF1 alpha or PGE2 from inferior vena cava segments or from renal cortex slices. Infusion of AII at 125 ng/min also increased SBP, plasma 6-keto-PGF1 alpha concentration, and in vitro release of 6-keto-PGF1 alpha from rings of aorta and renal inner medulla slices; at 75 ng/min AII had no effect. SBP on AII infusion day 11 correlated positively with both 6-keto-PGF1 alpha plasma concentration (r = 0.54) and net aortic ring release (r = 0.70) when data from all rats were combined. We conclude that augmentation of PGI2 production is a feature of AII-induced hypertension. The enhancement of PGI2 production may be an expression of nonspecific alteration in vascular structure and metabolic functions during AII-induced hypertension, as well as the result of a specific effect of the peptide on the arachidonate-prostaglandin system.

Authors

D I Diz, P G Baer, A Nasjletti

×

Full Text PDF | Download (1.46 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts