Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Canine renal receptors for parathyroid hormone. Down-regulation in vivo by exogenous parathyroid hormone.
C A Mahoney, R A Nissenson
C A Mahoney, R A Nissenson
Published August 1, 1983
Citation Information: J Clin Invest. 1983;72(2):411-421. https://doi.org/10.1172/JCI110989.
View: Text | PDF
Research Article

Canine renal receptors for parathyroid hormone. Down-regulation in vivo by exogenous parathyroid hormone.

  • Text
  • PDF
Abstract

Chronic elevation of circulating parathyroid hormone (PTH) is associated with decreased target cell responsiveness to PTH. To study the subcellular mechanism of this phenomenon we evaluated PTH receptors and adenylate cyclase activity in renal cortical membranes prepared before and after infusion of bovine parathyroid gland extract (PTE) into thyroparathyroidectomized dogs. PTE infusion resulted in a 53% decrease in the number of high-affinity receptors (P less than 0.01) associated with a 66% decrease in PTH-stimulated adenylate cyclase (P less than 0.01) relative to paired base-line values. Both the equilibrium constant of dissociation (KD) for PTH binding and the concentration of PTH that caused half-maximal stimulation of adenylate cyclase were in the range of 1 to 4 nM, and were unaffected by the PTE infusion. Responsiveness of the renal adenylate cyclase to sodium fluoride was 88% of base-line values. Infusion of the PTE vehicle alone did not affect PTH receptor number or blunt the adenylate cyclase response to PTH. Pretreatment of the membranes made after PTE infusion with guanosine triphosphate (GTP), which is known to produce dissociation of receptor-bound PTH, failed to restore either receptor number or PTH-stimulated adenylate cyclase. This finding was not due to a lack of efficacy of the GTP pretreatment, because identical GTP pretreatment restored PTH binding to base-line values in membranes partially occupied by incubation with PTH in vitro. Thus, simple residual occupancy of PTH receptors by the infused hormone did not appear to account for the observed receptor loss. The results of this study suggest that target cell resistance to PTH in patients with hyperparathyroidism might occur, at least in part, due to down-regulation of PTH receptors by circulating hormone.

Authors

C A Mahoney, R A Nissenson

×

Full Text PDF | Download (1.58 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts