Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Atypical familial dysbetalipoproteinemia associated with apolipoprotein phenotype E3/3.
R J Havel, … , P Tun, T Bersot
R J Havel, … , P Tun, T Bersot
Published July 1, 1983
Citation Information: J Clin Invest. 1983;72(1):379-387. https://doi.org/10.1172/JCI110978.
View: Text | PDF
Research Article

Atypical familial dysbetalipoproteinemia associated with apolipoprotein phenotype E3/3.

  • Text
  • PDF
Abstract

Familial dysbetalipoproteinemia has been reported to be associated uniquely with an apolipoprotein E phenotype (E2/2) that occurs in approximately 1% of all persons. We have observed the typical clinical and biochemical characteristics of this disorder in five members of a family, in all of whom the apolipoprotein E phenotype, as determined by isoelectric focusing electrophoresis, is E3/3. The disorder is present in three generations of the family: the proband, her mother, and three of the proband's five children. The proband's husband, father of all five children, also has apolipoprotein E phenotype E3/3, as do his two unaffected children. As in normal persons with phenotype E3/3, the apolipoprotein E of affected members appears to have a single residue of cysteine. When incorporated with egg lecithin into discoidal complexes, the apolipoprotein E from affected members was taken up normally into perfused livers of estradiol-treated rats, in which a high level of LDL receptors is expressed. When isoelectric focusing electrophoresis was carried out over a narrow range of pH (5-7), each of the apolipoprotein E isoforms of affected members was observed as a doublet, even after reduction of dimers of the protein with 2-mercaptoethanol and treatment with neuraminidase to minimize the content of sialylated forms of the protein. Doublets were also observed in the apolipoprotein E-2 of patients with classical dysbetalipoproteinemia, but only in the affected members of the family with atypical dysbetalipoproteinemia were the components of the doublets equally prominent. As in classical dysbetalipoproteinemia, both apolipoprotein B-100 and B-48 were present in the very low density lipoprotein fraction of plasma obtained in the postabsorptive state, indicating that remnantlike lipoproteins of both hepatic and intestinal origin accumulate. This observation, together with available evidence on the structural and functional heterogeneity of human apolipoprotein E, lead us to suggest that the disorder in this family is caused by one or two structurally abnormal forms of apolipoprotein E that contain a single residue of cysteine.

Authors

R J Havel, L Kotite, J P Kane, P Tun, T Bersot

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 167 0
PDF 24 7
Figure 0 7
Scanned page 120 5
Citation downloads 18 0
Totals 329 19
Total Views 348
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts