Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110960

Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics.

D K Kaul, M E Fabry, P Windisch, S Baez, and R L Nagel

Find articles by Kaul, D. in: JCI | PubMed | Google Scholar

Find articles by Fabry, M. in: JCI | PubMed | Google Scholar

Find articles by Windisch, P. in: JCI | PubMed | Google Scholar

Find articles by Baez, S. in: JCI | PubMed | Google Scholar

Find articles by Nagel, R. in: JCI | PubMed | Google Scholar

Published July 1, 1983 - More info

Published in Volume 72, Issue 1 on July 1, 1983
J Clin Invest. 1983;72(1):22–31. https://doi.org/10.1172/JCI110960.
© 1983 The American Society for Clinical Investigation
Published July 1, 1983 - Version history
View PDF
Abstract

To understand the contribution to the pathophysiology of sickle cell anemia of the different erythrocyte density types present in the blood of these patients, we have studied the viscosimetric and hemodynamic characteristics of four major classes of hemoglobin SS erythrocytes. We have isolated reticulocytes, discocytes, dense discocytes, and irreversibly sickled cells (fractions I-IV) on Percoll-Renografin density gradients. Bulk viscosity was studied in a coneplate viscosimeter and the hemodynamic studies were performed on the isolated, artificially perfused mesoappendix vasculature of the rat (Baez preparation). Bulk viscosity measurements at shear rates of 230 S-1 demonstrate that when the cells are oxygenated, fraction I (reticulocyte rich) has a higher viscosity than expected from its low intracellular hemoglobin concentration. The rest of the fractions exhibit moderate increases in bulk viscosity pari-passu with the corresponding increases in density (mean corpuscular hemoglobin concentration). When deoxygenated, all cell fractions nearly doubled their bulk viscosity and the deoxy-oxy differences remained constant. The Baez preparation renders a different picture: oxygenated fractions behave as predicted by the viscosimetric data, but, when deoxygenated, cell fractions exhibit dramatically increased peripheral resistance and the deoxy-oxy difference are directly proportional to cell density, thus, the largest increases were observed for fractions III and IV. The differences between the rheological and the hemodynamic measurements are most probably due to the different sensitivity of the two methods to the extent of intracellular polymerization. These results also demonstrate that the hitherto unrecognized fraction III cells (very dense discocytes that change shape very little on deoxygenation) are as detrimental to the microcirculation as the irreversibly sickled cell-rich fraction IV. They may, however, induce obstruction by a different mechanism. As the extent to which these fractions are populated by erythrocytes varies considerably from patient to patient, the distribution function of cell densities in each sickle cell anemia patient might have consequences for the type of pathophysiological events occurring in their microcirculation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 22
page 22
icon of scanned page 23
page 23
icon of scanned page 24
page 24
icon of scanned page 25
page 25
icon of scanned page 26
page 26
icon of scanned page 27
page 27
icon of scanned page 28
page 28
icon of scanned page 29
page 29
icon of scanned page 30
page 30
icon of scanned page 31
page 31
Version history
  • Version 1 (July 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts