Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Vitamin D Deficiency, hypocalcemia, and increased skeletal muscle degradation in rats.
S J Wassner, … , A Sperduto, M E Norman
S J Wassner, … , A Sperduto, M E Norman
Published July 1, 1983
Citation Information: J Clin Invest. 1983;72(1):102-112. https://doi.org/10.1172/JCI110947.
View: Text | PDF
Research Article

Vitamin D Deficiency, hypocalcemia, and increased skeletal muscle degradation in rats.

  • Text
  • PDF
Abstract

The myopathy associated with vitamin D deficiency was examined in vitamin D-deficient and vitamin D-supplemented rats. When compared with either vitamin D-supplemented ad lib. or pair-fed rats, weight gain and muscle mass were decreased in vitamin D-deficient hypocalcemic animals. With the exception of a modest decrease in muscle creatine phosphate levels, muscle composition was unchanged by vitamin D deficiency. Muscle protein turnover rates were determined in both in vivo and in vitro studies and demonstrated that myofibrillar protein degradation was increased in vitamin D deficiency. Normal growth rates could be maintained be feeding the rats vitamin D-deficient diets containing 1.6% calcium, which maintained plasma calcium within the normal range. In addition to its role in maintaining plasma calcium, vitamin D-supplemented rats had significantly higher levels of the anabolic hormone insulin. Vitamin D supplementation may affect muscle protein turnover by preventing hypocalcemia, as well as directly stimulating insulin secretion, rather than by a direct effect within skeletal muscle.

Authors

S J Wassner, J B Li, A Sperduto, M E Norman

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 210 7
PDF 58 17
Scanned page 369 11
Citation downloads 40 0
Totals 677 35
Total Views 712
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts