Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Vitamin D Deficiency, hypocalcemia, and increased skeletal muscle degradation in rats.
S J Wassner, … , A Sperduto, M E Norman
S J Wassner, … , A Sperduto, M E Norman
Published July 1, 1983
Citation Information: J Clin Invest. 1983;72(1):102-112. https://doi.org/10.1172/JCI110947.
View: Text | PDF
Research Article

Vitamin D Deficiency, hypocalcemia, and increased skeletal muscle degradation in rats.

  • Text
  • PDF
Abstract

The myopathy associated with vitamin D deficiency was examined in vitamin D-deficient and vitamin D-supplemented rats. When compared with either vitamin D-supplemented ad lib. or pair-fed rats, weight gain and muscle mass were decreased in vitamin D-deficient hypocalcemic animals. With the exception of a modest decrease in muscle creatine phosphate levels, muscle composition was unchanged by vitamin D deficiency. Muscle protein turnover rates were determined in both in vivo and in vitro studies and demonstrated that myofibrillar protein degradation was increased in vitamin D deficiency. Normal growth rates could be maintained be feeding the rats vitamin D-deficient diets containing 1.6% calcium, which maintained plasma calcium within the normal range. In addition to its role in maintaining plasma calcium, vitamin D-supplemented rats had significantly higher levels of the anabolic hormone insulin. Vitamin D supplementation may affect muscle protein turnover by preventing hypocalcemia, as well as directly stimulating insulin secretion, rather than by a direct effect within skeletal muscle.

Authors

S J Wassner, J B Li, A Sperduto, M E Norman

×

Full Text PDF

Download PDF (1.64 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts