Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Platelets have more than one binding site for von Willebrand factor.
Z M Ruggeri, … , R Bader, R R Montgomery
Z M Ruggeri, … , R Bader, R R Montgomery
Published July 1, 1983
Citation Information: J Clin Invest. 1983;72(1):1-12. https://doi.org/10.1172/JCI110946.
View: Text | PDF
Research Article

Platelets have more than one binding site for von Willebrand factor.

  • Text
  • PDF
Abstract

The binding of 125I-von Willebrand factor (125I-vWF) to platelets stimulated by thrombin, ADP, and a combination of ADP + epinephrine (EPI) is specific, saturable, and reversible. Active platelet metabolism and divalent cations are required for binding induced by these stimuli, but not by ristocetin, suggesting the existence of different mechanisms involved in the vWF-platelet interaction. A monoclonal antibody directed against an epitope of membrane glycoprotein (GP) Ib had no effect on the binding of 125I-vWF to normal platelets stimulated by thrombin or a combination of ADP + EPI, but completely blocked ristocetin-induced binding. Binding induced by thrombin to GPIb-blocked platelets was specific. Moreover, thrombin-induced binding of 125I-vWF was increased, rather than decreased, in two patients with the Bernard-Soulier syndrome whose platelets lacked GPIb. Conversely, monoclonal antibodies directed against the GPIIb/IIIa complex had no effect on ristocetin-induced binding of 125I-v-WF to normal platelets, but blocked thrombin- and ADP + EPI-induced binding. To exclude effects mediated by the platelet Fc receptor, a monoclonal IgG directed against an epitope present on human B cells and monocytes, but not expressed on resting or stimulated platelets, was used. It did not affect 125I-vWF binding induced by any of the stimuli. These studies show that platelets have more than one binding site for vWF, and that they may be exposed by different stimuli.

Authors

Z M Ruggeri, L De Marco, L Gatti, R Bader, R R Montgomery

×

Full Text PDF | Download (2.35 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts