Abstract

The structural and functional properties of spectrin from normal and hereditary pyropoikilocytosis (HPP) donors from the two unrelated families were studied. The structural domains of the spectrin molecule were generated by mild tryptic digestion and analyzed by two-dimensional electrophoresis (isoelectric focusing; sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The alpha I-T80 peptide (Mr 80,000) is not detectable in two related HPP donors; instead, two new peptides (Mr 50,000 and 21,000) are generated and have been identified as fragments of the normal alpha I-T80. A third sibling has reduced levels of both the normal alpha I-T80 and the two new peptides. A similar analysis of spectrin from another HPP family indicates that their spectrins contain reduced amounts of the alpha I-T80 and the 50,000 and 21,000 fragments of the alpha I domain. The HPP donor also has other structural variations in the alpha I, alpha II, and alpha III domains. The alpha I-T80 domain of normal spectrin has been shown to be an important site for spectrin oligomerization (J. Morrow and V.T. Marchesi. 1981. J. Cell Biol. 88: 463-468), and in vitro assays indicate that HPP spectrin has an impaired ability to oligomerize. Ghost membranes from HPP donors are also more fragile than membranes from normal erythrocytes when measured by ektacytometry. In both the oligomerization and fragility assays, the degree of impairment is correlated with the amount of normal alpha I-T80 present in the spectrin molecule. We believe that a structural alteration in the alpha I-T80 domain perturbs normal in vivo oligomerization of spectrin, producing a marked decrease in erythrocyte stability.

Authors

W J Knowles, J S Morrow, D W Speicher, H S Zarkowsky, N Mohandas, W C Mentzer, S B Shohet, V T Marchesi

×

Other pages: