Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Anion dependence of rabbit medullary collecting duct acidification.
D K Stone, … , J P Kokko, H R Jacobson
D K Stone, … , J P Kokko, H R Jacobson
Published May 1, 1983
Citation Information: J Clin Invest. 1983;71(5):1505-1508. https://doi.org/10.1172/JCI110905.
View: Text | PDF
Research Article

Anion dependence of rabbit medullary collecting duct acidification.

  • Text
  • PDF
Abstract

Rabbit medullary collecting duct (MCD) acidification has been demonstrated to occur by means of a sodium-independent, aldosterone-stimulated mechanism. We have examined the anionic dependence of this process by means of the isolated perfused tubule technique. Total replacement of perfusate chloride with gluconate enhanced tubular bicarbonate reabsorption (JHCO3), from a basal rate of 10.7 +/- 1.0 pmol X mm-1 X min-1 to a rate of 15.01 +/- 1.0 pmol X mm-1 X min-1. Removal of bath chloride, with and without removal of perfusate chloride completely abolished acidification. Bath, but not luminal 4-acetamido-4' isothiocyano-2,2'-disulfonic stilbene provoked a marked decrease in JHCO3 from 10.1 +/- 1.2 pmol X mm-1 X min-1 to 2.3 +/- 0.3 pmol X mm-1 X min-1. Measurement of chloride reabsorptive rate (JCl) revealed colinearity between JHCO3 (9.18 +/- 0.9 pmol X mm-1 X min-1) and JCl (9.75 +/- 1.18 pmol X mm-1 X min-1). We propose a model of mammalian distal nephron acidification in which (a) cellular base exit is effected by means of a basolateral membrane Cl-base exchanger and (b) net electroneutrality of electrogenic proton secretion is maintained by the parallel movement of an anionic species, functionally chloride.

Authors

D K Stone, D W Seldin, J P Kokko, H R Jacobson

×

Full Text PDF

Download PDF (617.21 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts