Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editor's notes
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110903

Ketoconazole blocks adrenal steroidogenesis by inhibiting cytochrome P450-dependent enzymes.

D S Loose, P B Kan, M A Hirst, R A Marcus, and D Feldman

Find articles by Loose, D. in: JCI | PubMed | Google Scholar

Find articles by Kan, P. in: JCI | PubMed | Google Scholar

Find articles by Hirst, M. in: JCI | PubMed | Google Scholar

Find articles by Marcus, R. in: JCI | PubMed | Google Scholar

Find articles by Feldman, D. in: JCI | PubMed | Google Scholar

Published May 1, 1983 - More info

Published in Volume 71, Issue 5 on May 1, 1983
J Clin Invest. 1983;71(5):1495–1499. https://doi.org/10.1172/JCI110903.
© 1983 The American Society for Clinical Investigation
Published May 1, 1983 - Version history
View PDF
Abstract

Ketoconazole has recently been shown to interfere with steroidogenesis in patients and rat in vitro systems. In this study we attempted to elucidate the site of inhibition in the adrenal gland. Although ketoconazole impaired adrenocorticotropic hormone stimulated cyclic (c)AMP production, dibutyrl cAMP addition did not bypass the steroidogenic blockade indicating that the critical ketoconazole-inhibited step was distal to cAMP. Addition of radiolabeled substrates to isolated adrenal cells and analysis of products by high performance liquid chromatography demonstrated a ketoconazole block between deoxycorticosterone (DOC) and corticosterone. This 11-hydroxylase step is carried out by a P450-dependent mitochondrial enzyme. No restriction of progesterone or pregnenolone conversion to DOC was detected, steps carried out by non-P450-dependent microsomal enzymes. Inhibition of cholesterol conversion to pregnenolone by mitochondrial fractions indicated a second block at the side chain cleavage step, another mitochondrial P450-dependent enzyme. Adrenal malate dehydrogenase, a non-P450-dependent mitochondrial enzyme was not inhibited while renal 24-hydroxylase, a P450-dependent mitochondrial enzyme in another organ, was blocked by ketoconazole. We conclude that ketoconazole may be a general inhibitor of mitochondrial P450 enzymes. This finding suggests that patients receiving ketoconazole be monitored for side effects relevant to P450 enzyme inhibition. Further, we raise the possibility that this drug action may be beneficially exploited in situations where inhibition of steroidogenesis is a therapeutic goal.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1495
page 1495
icon of scanned page 1496
page 1496
icon of scanned page 1497
page 1497
icon of scanned page 1498
page 1498
icon of scanned page 1499
page 1499
Version history
  • Version 1 (May 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts