Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

In Vivo Studies of Serum C-reactive Protein Turnover in Rabbits
Mohanathasan Chelladurai, … , Stephen S. Macintyre, Irving Kushner
Mohanathasan Chelladurai, … , Stephen S. Macintyre, Irving Kushner
Published March 1, 1983
Citation Information: J Clin Invest. 1983;71(3):604-610. https://doi.org/10.1172/JCI110806.
View: Text | PDF
Research Article

In Vivo Studies of Serum C-reactive Protein Turnover in Rabbits

  • Text
  • PDF
Abstract

We determined the plasma half-life of the acute phase protein C-reactive protein (CRP) both in normal rabbits and in rabbits that had received inflammatory stimuli. Rabbit CRP was purified from acute phase serum by Cx-polysaccharide affinity chromatography, radiolabeled, and rendered pyrogen-free. Six unstimulated rabbits were injected intravenously with 1251-CRP prepared by the lactoperoxidase method and four were injected with CRP labeled by methylation using [14C]formaldehyde. Blood samples were obtained at 0.25 h and at intervals thereafter. Plasma half-life of CRP was calculated from the data generated during the first 12 h, by which time an average of 86% of labeled protein had disappeared from the blood stream. The mean half-life for CRP was 4.45±0.2 h, with no significant difference (0.40 < P < 0.45) between 1251- and 14C-labeled CRP. In six animals stimulated with either endotoxin or turpentine 24 h before injection of labeled CRP, a mean half-life of 5.8±0.6 h was found, not significantly different (0.30 < P < 0.35) from unstimulated rabbits. We equated fractional catabolic rate to fractional disappearance rate, since the rate constant for passage of CRP from vascular to extravascular compartment can be assumed to be relatively small compared to the observed fractional disappearance rate. Fractional catabolic rate was independent of serum CRP concentration; average fractional catabolic rate in all 16 animals was 14±0.8% h-1 of the plasma pool. We were able to estimate rate of CRP synthesis, based on steady-state assumptions of pool sizes in those rabbits whose serum CRP levels did not change substantially during the period of study. Values as low as 6.7 μg/kg per h in the unstimulated animals and as high as 560 μg/kg per h in the stimulated animals were found.

Authors

Mohanathasan Chelladurai, Stephen S. Macintyre, Irving Kushner

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 108 4
PDF 41 14
Scanned page 251 5
Citation downloads 42 0
Totals 442 23
Total Views 465
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts