Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110759

Resistance to 1,25-dihydroxyvitamin D. Association with heterogeneous defects in cultured skin fibroblasts.

U A Liberman, C Eil, and S J Marx

Find articles by Liberman, U. in: PubMed | Google Scholar

Find articles by Eil, C. in: PubMed | Google Scholar

Find articles by Marx, S. in: PubMed | Google Scholar

Published February 1, 1983 - More info

Published in Volume 71, Issue 2 on February 1, 1983
J Clin Invest. 1983;71(2):192–200. https://doi.org/10.1172/JCI110759.
© 1983 The American Society for Clinical Investigation
Published February 1, 1983 - Version history
View PDF
Abstract

We evaluated the interaction of [3H]1,25(OH)2D3 with skin fibroblasts cultured from normal subjects or from affected members of six kindreds with rickets and resistance to 1-alpha, 25(OH)2D [1,25(OH)2D]. We analyzed two aspects of the radioligand interaction; nuclear uptake with dispersed, intact cells at 37 degrees C and binding at 0 degrees C with soluble extract ("cytosol") prepared from cells disrupted in buffer containing 300 mM KCl and 10 mM sodium molybdate. With normal fibroblasts the affinity and capacity of nuclear uptake of [3H]1,25(OH)2D3 were 0.5 nM and 10,300 sites per cell, respectively; for binding with cytosol these were 0.13 nM and 8,900 sites per cell, respectively. The following four patterns of interaction with [3H]1,25(OH)2D3 were observed with cells cultured from affected patients: (a) two kindreds; cytosol binding and whole-cell nuclear uptake both unmeasurable; (b) one kindred, decreased capacity and normal affinity both for binding in cytosol and for nuclear uptake in whole cells; (c) two kindreds, normal or nearly normal capacity and affinity of binding in cytosol but unmeasurable whole-cell nuclear uptake; and (d) one kindred, normal capacity and affinity of both cytosol binding and whole-cell nuclear uptake. In all cases where the radioligand bound with high affinity in nucleus or cytosol, the nucleus- or cytosol-associated radioligand exhibited normal sedimentation velocity on sucrose density gradients. When two kindreds exhibited similar patterns (i.e. pattern a or c) with the analyses of cultured fibroblasts, clinical features in affected members suggested that the underlying genetic defects were not identical. In conclusion: (a) Fibroblasts cultured from human skin manifest nuclear uptake and cytosol binding of [3H]1,25(OH)2D3 that is an expression of the genes determining these processes in target tissues. (b) Based upon data from clinical evaluations and from analyses of cultured fibroblasts, severe resistance to 1,25(OH)2D resulted from five or six distinct genetic mutations in six kindreds.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 192
page 192
icon of scanned page 193
page 193
icon of scanned page 194
page 194
icon of scanned page 195
page 195
icon of scanned page 196
page 196
icon of scanned page 197
page 197
icon of scanned page 198
page 198
icon of scanned page 199
page 199
icon of scanned page 200
page 200
Version history
  • Version 1 (February 1, 1983): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts