Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Detection and partial characterization of antibacterial factor(s) in alveolar lining material of rats.
J D Coonrod, K Yoneda
J D Coonrod, K Yoneda
Published January 1, 1983
Citation Information: J Clin Invest. 1983;71(1):129-141. https://doi.org/10.1172/JCI110741.
View: Text | PDF
Research Article

Detection and partial characterization of antibacterial factor(s) in alveolar lining material of rats.

  • Text
  • PDF
Abstract

Intracellular killing of Staphylococcus aureus by alveolar macrophages is known to be enhanced by exposure to alveolar lining material. Because this material may have a role in pulmonary host defenses, we have studied its effect on pneumococci and other nonstaphylococcal organisms. Alveolar lining material from rats caused rapid killing and lysis of pneumococci. The antipneumococcal activity was localized to the surfactant-containing fraction of the fluid and was not affected by trypsin. Phospholipid extracts of the surfactant fraction or purified lamellar bodies killed pneumococci. Lysis of pneumococci by the surfactant fraction appeared to be mediated by a detergent-like activation of pneumococcal autolysin, in that bacteriolysis was prevented by substitution of ethanolamine for choline in pneumococcal cell walls, and a pneumococcal transformant that lacked autolysin was not lysed. The surfactant fraction readily killed pneumococci containing ethanolamine or the autolysin-defective transformant, and studies with tritiated methyl-D-glucose loading and release showed that killing was associated with increased bacterial cell membrane permeability. Bactericidal activity (without lysis) was observed with several nonpneumococcal gram-positive bacteria, including Streptococcus viridans, unspeciated respiratory streptococci, Streptococcus pyogenes, Streptococcus bovis, and Bacillus species. Purified diacylphospholipids had no antibacterial activity, however, a lysophospholipid, palmitoyl lysophosphatidylcholine, had many properties resembling the surfactant-containing fraction of lavage, including autolysin-mediated pneumococcal lysis, altered cell membrane permeability, and antibacterial activity against several gram-positive bacteria.

Authors

J D Coonrod, K Yoneda

×

Full Text PDF

Download PDF (3.21 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts