Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Sodium- and energy-dependent uptake of myo-inositol by rabbit peripheral nerve. Competitive inhibition by glucose and lack of an insulin effect.
D A Greene, S A Lattimer
D A Greene, S A Lattimer
Published November 1, 1982
Citation Information: J Clin Invest. 1982;70(5):1009-1018. https://doi.org/10.1172/JCI110688.
View: Text | PDF
Research Article

Sodium- and energy-dependent uptake of myo-inositol by rabbit peripheral nerve. Competitive inhibition by glucose and lack of an insulin effect.

  • Text
  • PDF
Abstract

Experimental diabetes consistently reduces the concentration of free myo-inositol in peripheral nerve, which usually exceeds that of plasma by 90-100-fold. This phenomenon has been explicitly linked to the impairment of nerve conduction in the acutely diabetic streptozocin-treated rat. However, the mechanism by which acute experimental diabetes lowers nerve myo-inositol content and presumably alters nerve myo-inositol content and presumably alters nerve myo-inositol metabolism is unknown. Therefore, the effects of insulin and elevated medium glucose concentration of 2-[3H]myo-inositol uptake were studied in a metabolically-defined in vitro peripheral nerve tissue preparation derived from rabbit sciatic nerve, whose free myo-inositol content is reduced by experimental diabetes. The results demonstrate that myo-inositol uptake occurs by at least two distinct transport systems in the normal endoneurial preparation. A sodium- and energy-dependent saturable transport system is responsible for at least 94% of the measured uptake at medium myo-inositol concentrations approximating that present in plasma. This carrier-mediated transport system has a high affinity for myo-inositol (Kt = 63 microM), and is not influenced acutely by physiological concentrations of insulin; it is, however, inhibited by hyperglycemic concentrations of glucose added to the incubation medium in a primarily competitive fashion. Thus, competitive inhibition of peripheral nerve myo-inositol uptake by glucose may constitute a mechanism by which diabetes produces physiologically significant alterations in peripheral nerve myo-inositol metabolism.

Authors

D A Greene, S A Lattimer

×

Full Text PDF

Download PDF (1.66 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts