Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Role of angiotensin II in potassium-mediated stimulation of aldosterone secretion in the dog.
J H Pratt
J H Pratt
Published September 1, 1982
Citation Information: J Clin Invest. 1982;70(3):667-672. https://doi.org/10.1172/JCI110661.
View: Text | PDF
Research Article

Role of angiotensin II in potassium-mediated stimulation of aldosterone secretion in the dog.

  • Text
  • PDF
Abstract

Potassium is known to enhance the aldosterone-stimulating action of angiotensin II. Such a synergistic interaction of potassium with angiotensin II could represent an action by angiotensin II to potentiate potassium as a stimulus. To examine for this effect of angiotensin II on potassium, plasma aldosterone levels were measured before and after an infusion of potassium chloride (15 meq i.v.) into dogs without and with prevention of angiotensin II formation by captopril, an angiotensin converting-enzyme inhibitor. In addition, responses to potassium were measured in a group of dogs receiving angiotensin II plus captopril. After potassium infusion, control dogs showed an increase of 7.7 +/- 1.9 (SEM) ng/dl (P less than 0.001) in the level of plasma aldosterone. In contrast, captopril-treated dogs showed no change in plasma aldosterone concentration in response to potassium. When angiotensin II was administered to captopril-treated dogs responsiveness to potassium administration was restored (plasma aldosterone concentration increased by 7.4 +/- 2.1 ng/dl, P less than 0.002). ACTH stimulated aldosterone secretion despite captopril treatment (P less than 0.001), however, ACTH produced a greater increase in the plasma aldosterone concentration in controls than in captopril-treated animals. It is evident from these results that stimulation of aldosterone secretion by potassium is considerably enhanced by angiotensin II. There appears to exist an important interdependence of these stimuli in the regulation of aldosterone secretion.

Authors

J H Pratt

×

Full Text PDF | Download (983.42 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts