Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Dietary Modulation of Active Potassium Secretion in the Cortical Collecting Tubule of Adrenalectomized Rabbits
Charles S. Wingo, … , Juha P. Kokko, Harry R. Jacobson
Charles S. Wingo, … , Juha P. Kokko, Harry R. Jacobson
Published September 1, 1982
Citation Information: J Clin Invest. 1982;70(3):579-586. https://doi.org/10.1172/JCI110650.
View: Text | PDF
Research Article

Dietary Modulation of Active Potassium Secretion in the Cortical Collecting Tubule of Adrenalectomized Rabbits

  • Text
  • PDF
Abstract

Addisonian patients can maintain potassium homeostasis despite the absence of mineralocorticoid. The present in vitro microperfusion studies examine what role the cortical collecting tubule might play in this process. All studies were performed on tubules harvested from adrenalectomized rabbits, which were maintained on 0.15 M NaCl drinking water and dexamethasone 50 μg/d. Perfusion and bath solutions were symmetrical Ringer's bicarbonate with [K] of 5 meq/liter. Initial studies on cortical collecting tubules from adrenalectomized animals ingesting a high potassium chow (9 meq K/kg body wt) demonstrated net potassium secretion against an electrochemical gradient (mean collected fluid [K] 16.5±2.6 meq/liter with an observed transepithelial voltage of −6.3±4.1 mV; predicted voltage for passive distribution of potassium being −28.2 mV). To examine whether this active potassium secretion could be modulated by dietary potassium, independent of mineralocorticoid, two diets identical in all respects except for potassium content were formulated. Potassium secretion was compared in cortical collecting tubules harvested from adrenalectomized animals on low (0.1 meq K) and high (10 meq K) potassium intake.

Authors

Charles S. Wingo, Donald W. Seldin, Juha P. Kokko, Harry R. Jacobson

×

Full Text PDF | Download (1.27 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts