Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110281

Role of Thromboxane and Prostacyclin in Pulmonary Vasomotor Changes after Endotoxin in Dogs

C. A. Hales, L. Sonne, M. Peterson, D. Kong, M. Miller, and W. David Watkins

Department of Medicine (Pulmonary), Massachusetts General Hospital, Boston, Massachusetts 02114

Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts 02114

Harvard Medical School, Boston, Massachusetts 02114

Find articles by Hales, C. in: PubMed | Google Scholar

Department of Medicine (Pulmonary), Massachusetts General Hospital, Boston, Massachusetts 02114

Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts 02114

Harvard Medical School, Boston, Massachusetts 02114

Find articles by Sonne, L. in: PubMed | Google Scholar

Department of Medicine (Pulmonary), Massachusetts General Hospital, Boston, Massachusetts 02114

Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts 02114

Harvard Medical School, Boston, Massachusetts 02114

Find articles by Peterson, M. in: PubMed | Google Scholar

Department of Medicine (Pulmonary), Massachusetts General Hospital, Boston, Massachusetts 02114

Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts 02114

Harvard Medical School, Boston, Massachusetts 02114

Find articles by Kong, D. in: PubMed | Google Scholar

Department of Medicine (Pulmonary), Massachusetts General Hospital, Boston, Massachusetts 02114

Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts 02114

Harvard Medical School, Boston, Massachusetts 02114

Find articles by Miller, M. in: PubMed | Google Scholar

Department of Medicine (Pulmonary), Massachusetts General Hospital, Boston, Massachusetts 02114

Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts 02114

Harvard Medical School, Boston, Massachusetts 02114

Find articles by Watkins, W. in: PubMed | Google Scholar

Published August 1, 1981 - More info

Published in Volume 68, Issue 2 on August 1, 1981
J Clin Invest. 1981;68(2):497–505. https://doi.org/10.1172/JCI110281.
© 1981 The American Society for Clinical Investigation
Published August 1, 1981 - Version history
View PDF
Abstract

Cyclooxygenase inhibitors prevent the pulmonary vasomotor changes in response to low-dose endotoxin. We, therefore, explored the role of two highly vasoactive prostanoids, thromboxane A2, a vasoconstrictor, and prostacyclin, a vasodilator, in the transient pulmonary vasoconstriction and subsequent loss of alveolar hypoxis vasoconstriction (AHPV) that follows endotoxin. AHPV was tested in the dog with a double-lumened endotracheal tube allowing ventilation of one lung with nitrogen as a hypoxic challenge while the other lung was ventilated with oxygen to maintain systemic oxygenation. Relative distribution of perfusion to the two lungs was assessed with intravenous 133Xe and external scintillation detectors. The stable metabolites of thromboxane and prostacyclin, i.e., thromboxane B2 and 6-keto-prostaglandin F1α were measured in plasma with radioimmunoassay. 15 μg/kg i.v. of endotoxin induced no rise in pulmonary vascular resistance (PVR), but prevented AHPV so that the initial 33% (±2 SEM) decrease in perfusion to the hypoxic lung became only a 2% (±1) decrease. Circulating levels of thromboxane and prostacyclin concurrently rose (P < 0.01) from nondetectable levels to 380 pg/ml (±40) and 360 pg/ml (±130). 150 μg/kg of endotoxin induced a transient rise in PVR from 4.09 to 9.00 mm Hg/liter per min in association (r = 0.89, P < 0.01) with a sharp rise in thromboxane levels to 4,460 pg/ml (±1,350) whereas prostacyclin levels were elevated less markedly to 550 pg/ml (±400). Prostaglandin F2α, another vasoconstrictor, was not elevated. 30 min after endotoxin when PVR was again base line and AHPV lost, thromboxane fell significantly (P < 0.01) to 2,200 pg/ml (±1,100) whereas prostacyclin remained elevated at 360 pg/ml (±135), a level similar to that seen when 15 μg/kg of endotoxin induced loss of AHPV. Indomethacin prevented the rise in thromboxane and prostacyclin after endotoxin as well as the changes in pulmonary vasomotor tone. Thus, a complex interaction between thromboxane and prostacyclin is involved in the pulmonary vasomotor response to low-dose endotoxin.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 497
page 497
icon of scanned page 498
page 498
icon of scanned page 499
page 499
icon of scanned page 500
page 500
icon of scanned page 501
page 501
icon of scanned page 502
page 502
icon of scanned page 503
page 503
icon of scanned page 504
page 504
icon of scanned page 505
page 505
Version history
  • Version 1 (August 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts