Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Cystic fibrosis ciliary dyskinesia substances and pulmonary disease. Effects of ciliary dyskinesia substances on neutrophil movement in vitro.
G B Wilson, … , M T Parise, E Floyd
G B Wilson, … , M T Parise, E Floyd
Published July 1, 1981
Citation Information: J Clin Invest. 1981;68(1):171-183. https://doi.org/10.1172/JCI110233.
View: Text | PDF
Research Article

Cystic fibrosis ciliary dyskinesia substances and pulmonary disease. Effects of ciliary dyskinesia substances on neutrophil movement in vitro.

  • Text
  • PDF
Abstract

Cultured mononuclear cells (MNC) from individuals homozygous or heterozygous for the defective gene causing the inherited disease cystic fibrosis (CF) synthesize three unusual "mediators" termed ciliary dyskinesia substances (CDS), which markedly affect tracheal mucociliary systems in vitro. MNC cultures from normal healthy controls do not accumulate any CDS, whereas MNC cultures from non-CF patients controls with pulmonary disease synthesized at least one CDS. The possible involvement of the CDS in pulmonary disease is being investigated. In this study, we sought to determine whether the CDS could be chemoattractants for polymorphonuclear neutrophils (PMN), since they have characteristics in common with known chemoattractants generated by alveolar macrophages. Our analyses of crude MNC culture supernates indicated that cultures from both CF genotypes accumulate significantly higher levels of PMN chemoattractants than do analogous cultures from normal healthy controls. CF homozygote MNC also generated more activity than MNC from patient controls with chronic pulmonary disease. Fractionation of MNC culture supernates by gel permeation chromatography and characterization of active fractions demonstrated six distinct PMN chemoattractants in cultures from CF genotypes; five were also present in patient control and four in normal healthy control cultures. The excessive chemoattractant activity in MNC cultures from CF genotypes and patient controls was due to several different substances produced by monocytes: (a) two components of 1,000-3,500 mol wt. (b) two fragments of C5, and (c) a fragment of C3. One C5 fragment had ciliary dyskinesia activity, the other did not. The C3 fragment chemoattractant also had ciliary dyskinesia activity and was not found in MNC cultures from patient controls. A third CDS, Which is CF-specific (5,000 mol wt), was neither chemotactic not chemokinetic and did not inhibit random PMN migration; however, fractions containing this CF-specific CDS completely inhibited PMN chemotaxis in response to three different chemoattractants. We conclude that all of the CDS can potentially play a role in the pathophysiology of lung disease, as judged by their effects on PMN movement in vitro.

Authors

G B Wilson, H H Fudenberg, M T Parise, E Floyd

×

Full Text PDF

Download PDF (2.00 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts