Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Evidence for the Involvement of Na/Ca Exchange in Glucose-induced Insulin Release from Rat Pancreatic Islets
Eberhard G. Siegel, … , Albert E. Renold, Geoffrey W. G. Sharp
Eberhard G. Siegel, … , Albert E. Renold, Geoffrey W. G. Sharp
Published November 1, 1980
Citation Information: J Clin Invest. 1980;66(5):996-1003. https://doi.org/10.1172/JCI109969.
View: Text | PDF
Research Article

Evidence for the Involvement of Na/Ca Exchange in Glucose-induced Insulin Release from Rat Pancreatic Islets

  • Text
  • PDF
Abstract

Glucose-induced inhibition of Ca++ extrusion from the β-cell may contribute to the rise in cytosol Ca++ that leads to insulin release. To study whether interference with Na/Ca exchange is involved in this inhibition the effects of glucose were compared to those of ouabain. This substance inhibits Na/K ATPase, decreases the transmembrane Na+ gradient in islets, and thus interferes with Na/Ca exchange. Collagenase isolated rat islets were maintained for 2 d in tissue culture with a trace amount of 45Ca++. Insulin release and 45Ca++ efflux were then measured during perifusion. In Ca++-deprived medium (to avoid changes in tissue specific radioactivity) 16.7 mM glucose inhibited 45Ca++ efflux. Initially 1 mM ouabain inhibited 45Ca++ efflux in a similar fashion, the onset being even faster than that of glucose. The effects of 16.7 mM glucose and ouabain were not additive, indicating that both substances may interfere with Na/Ca exchange. In the presence of Ca++, 16.7 mM glucose induced biphasic insulin release. Ouabain alone caused a gradual increase of insulin release. Again, the effects of ouabain and 16.7 mM glucose were not additive. In contrast, at a submaximal glucose concentration (7 mM) ouabain enhanced both phases of release. An important role for Na/Ca exchange is suggested from experiments in which Ca++ was removed at the time of glucose-stimulation (16.7 mM). The resulting marked inhibition of insulin release was completely overcome during first phase by ouabain added at the time of Ca++ removal; second phase was restored to 60%. This could be due to the rapid inhibitory action of ouabain on Ca++ efflux thereby preventing loss of cellular calcium critical for glucose to induce insulin release. It appears, therefore, that interference with Na/Ca exchange is an important event in the stimulation of insulin release by glucose.

Authors

Eberhard G. Siegel, Claes B. Wollheim, Albert E. Renold, Geoffrey W. G. Sharp

×

Full Text PDF

Download PDF (1.37 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts