Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109756

Oxidation of Methionine by Human Polymorphonuclear Leukocytes

Min-Fu Tsan and Jasmine W. Chen

Division of Hematology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205

Division of Nuclear Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205

Find articles by Tsan, M. in: PubMed | Google Scholar

Division of Hematology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205

Division of Nuclear Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205

Find articles by Chen, J. in: PubMed | Google Scholar

Published May 1, 1980 - More info

Published in Volume 65, Issue 5 on May 1, 1980
J Clin Invest. 1980;65(5):1041–1050. https://doi.org/10.1172/JCI109756.
© 1980 The American Society for Clinical Investigation
Published May 1, 1980 - Version history
View PDF
Abstract

Studies of the photosensitized oxidation have demonstrated that photodynamic oxidation of methionine is mediated by singlet oxygen (1O2). In this study, we demonstrated that phagocytosing human polymorphonuclear leukocytes (PMN), but not resting PMN, oxidized both intracellular and extracellular methionine to methionine sulfoxide. N-ethylmaleimide, which inhibits phagocytosis and cellular metabolism, inhibited the oxidation of methionine. Neutrophils from patients with chronic granulomatous disease did not oxidize methionine even in the presence of phagocytosis. The oxidation of methionine by phagocytosing normal PMN was inhibited by 1O2 quenchers, (1.4-diazabicyclo-[2,2,2]-octane, tryptophan, NaN3), myeloperoxidase (MPO) inhibitors (NaN3, KCN) and catalase. In contrast, superoxide dismutase, ethanol, and mannitol had no effect. Furthermore, 1O2 quenchers did not interfere with the production of superoxide (O2−) by phagocytosing PMN. The combination of catalase and SOD did not enhance the inhibition of methionine by phagocytosing PMN. On the other hand, deuterium oxide stimulated the oxidation of methionine by PMN almost 200%.

H2O2 at high concentrations oxidized methionine to methionine sulfoxide. However, when similar amounts of H2O2 were added to human PMN, they did not oxidize methionine. In contrast, when H2O2, at concentrations too low to oxidize methionine by itself, was added to the granular fraction, but not the soluble fraction, they oxidized methionine to methionine sulfoxide. The oxidation of methionine by the combination of H2O2 and granular fractions was inhibited by 1O2 quenchers and MPO inhibitors, but it was stimulated by deuterium oxide. Removal of chloride anion also prevented the oxidation of methionine by the granular fractions.

Our results suggest that the oxidation of methionine by phagocytosing PMN is dependent on the MPO-mediated antimicrobial system (MPO-H2O2-Cl−). They also suggest, but do not prove that the oxidation of methionine is mediated by 1O2. Oxidation of methionine may be one of the mechanisms that human PMN damage microorganisms.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1041
page 1041
icon of scanned page 1042
page 1042
icon of scanned page 1043
page 1043
icon of scanned page 1044
page 1044
icon of scanned page 1045
page 1045
icon of scanned page 1046
page 1046
icon of scanned page 1047
page 1047
icon of scanned page 1048
page 1048
icon of scanned page 1049
page 1049
icon of scanned page 1050
page 1050
Version history
  • Version 1 (May 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts