Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Prevention of Collagen Deposition Following Pulmonary Oxygen Toxicity in the Rat by Cis-4-Hydroxy-l-Proline
David J. Riley, … , Norman H. Edelman, Darwin J. Prockop
David J. Riley, … , Norman H. Edelman, Darwin J. Prockop
Published March 1, 1980
Citation Information: J Clin Invest. 1980;65(3):643-651. https://doi.org/10.1172/JCI109709.
View: Text | PDF
Research Article

Prevention of Collagen Deposition Following Pulmonary Oxygen Toxicity in the Rat by Cis-4-Hydroxy-l-Proline

  • Text
  • PDF
Abstract

Exposure of rats to high oxygen tensions causes increased collagen content of lungs and alveolar enlargement in 3-6 wk. We tested whether cis-hydroxyproline, a proline analogue that inhibits collagen synthesis, could prevent the collagen accumulation and alveolar enlargement. Rats were exposed to hyperoxia for 60 h and then to room air and hyperoxia for alternate 24-h periods for 11.5 d. Treated oxygen-exposed rats received 200 mg/kg cis-hydroxyproline twice daily over the 14-d exposure period. Control rats breathed room air. Examination of lungs on day 14 showed collagen content of oxygen-exposed lungs to be 48% greater than control (P < 0.05). The collagen content of the treated oxygen-exposed lungs was −12% of control (NS). Total lung volume was 16% greater than control in oxygen-exposed rats (P < 0.05) and 8% greater than control in treated oxygen-exposed rats (NS). Morphometric studies showed alveolar size was greater than control in oxygen-exposed rats (188±11 [SE] vs. 143±6 μμl [P < 0.05]). Oxygen-exposed, treated rats had a mean alveolar volume of 150±7 μμl. Lung pressure-volume curves were significantly shifted to the left of control in the oxygen-exposed rats, whereas the curves of the oxygen-exposed, treated group were identical to control. These data suggest that cis-hydroxyproline prevented the accumulation of collagen in the lungs in pulmonary oxygen toxicity. In addition, there was apparent protection from airspace dilatation and decreased lung elasticity, suggesting that alveolar enlargement after oxygen toxicity is linked to the deposition in lung tissue of new connective tissue fibers.

Authors

David J. Riley, Richard A. Berg, Norman H. Edelman, Darwin J. Prockop

×

Full Text PDF | Download (1.54 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts