Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Binding of Retinoids to Human Breast Cancer Cell Lines and their Effects on Cell Growth
Andre Lacroix, Marc E. Lippman
Andre Lacroix, Marc E. Lippman
Published March 1, 1980
Citation Information: J Clin Invest. 1980;65(3):586-591. https://doi.org/10.1172/JCI109703.
View: Text | PDF
Research Article

Binding of Retinoids to Human Breast Cancer Cell Lines and their Effects on Cell Growth

  • Text
  • PDF
Abstract

Vitamin A and its analogues (retinoids) regulate the differentiation of epithelial tissues. Retinoids inhibit the induction of rat mammary cancers by carcinogens in vivo, and cellular binding proteins for retinoids have been demonstrated in some human breast cancer samples. In this study, we examined the model system of human breast cancer cell lines in long-term tissue culture for effects of retinoids on growth and for the presence of cellular retinoid binding proteins. Retinoic acid and retinol inhibit the growth of of MCF-7, Hs578T, and ZR-75-B cell lines. Retinoic acid is more potent than retinol in this regard: 50% growth inhibition is achieved by 6 nM retinoic acid in ZR-75-B and by 700 nM in MCF-7 and Hs578T, whereas 5-8 μM retinol is required in all three cell lines. The time to onset of growth inhibition varies markedly between cell lines and is not related to cell density or doubling time. Retinoic acid increases the doubling time of MCF-7 and ZR-75-B by two- to threefold, but causes cell death in Hs578T. The growth inhibition is reversible in every cell line by removal of retinoic acid. Specific and distinct binding of [3H]retinoic acid and [3H]retinol is present in cytosols of MCF-7 and Hs578T cells as assessed by sucrose density gradient centrifugation. In ZR-75-B, [3H]retinoic acid binding was present, but no binding of [3H]retinol was detectable. This study reveals that retinoids may play an important role in the regulation and treatment of human breast cancer and that human breast cancer cell lines represent a useful model to study this role.

Authors

Andre Lacroix, Marc E. Lippman

×

Full Text PDF | Download (990.97 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts