Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mechanisms of photodynamic inactivation of herpes simplex viruses: comparison between methylene blue, light plus electricity, and hematoporhyrin plus light.
L E Schnipper, … , M Swartz, C S Crumpacker
L E Schnipper, … , M Swartz, C S Crumpacker
Published February 1, 1980
Citation Information: J Clin Invest. 1980;65(2):432-438. https://doi.org/10.1172/JCI109686.
View: Text | PDF
Research Article

Mechanisms of photodynamic inactivation of herpes simplex viruses: comparison between methylene blue, light plus electricity, and hematoporhyrin plus light.

  • Text
  • PDF
Abstract

Herpes simplex virus (HSV) types 1 and 2 have been inactivated in vitro using low concentrations of methylene blue (MB), light (lambda) plus electricity (E), or hematoporphyrin derivative (HPD) plus lambda. Both techniques introduce single strand interruptions into viral DNA, but do not make double strand ruptions into viral DNA, but do not make double strand breaks. MB, lambda plus E-treated virions adsorb normally to and penetrate susceptible cells, whereas HSV inactivated with HPC and light does not. This difference is emphasized by the induction of new viral and cell DNA synthesis after infection with MB, lambda plus E-treated virions, whereas only cell, DNA but no HSV DNA, is made subsequent to HPD and lambda exposure. These observations reflect disparate mechanisms of viral inactivation. A block(s) in viral maturation, subsequent to viral DNA synthesis, occurs as a result of treatment with MB, lambda and E, whereas HPD plus lambda-treated particles fail to enter a susceptible cell, and therefore do not initiate an infection.

Authors

L E Schnipper, A A Lewin, M Swartz, C S Crumpacker

×

Full Text PDF

Download PDF (1.16 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts