Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Propranolol decreases sympathetic nervous activity reflected by plasma catecholamines during evolution of myocardial infarction in man.
H S Mueller, S M Ayres
H S Mueller, S M Ayres
Published February 1, 1980
Citation Information: J Clin Invest. 1980;65(2):338-346. https://doi.org/10.1172/JCI109677.
View: Text | PDF
Research Article

Propranolol decreases sympathetic nervous activity reflected by plasma catecholamines during evolution of myocardial infarction in man.

  • Text
  • PDF
Abstract

Plasma 1-norepinephrine and epinephrine contents were strikingly elevated in 70 patients during evolution of myocardial infarction. Propranolol or placebo, 0.1 mg/kg i.v., was administered randomly an average of 10 h after infarction and continued orally for 3 d. Propranolol, but not placebo, acutely decreased 1-norepinephrine contents from 2.24 +/- 1.33 (mean +/- SD) to 1.31 +/- 0.74 microgram/liter, P less than 0.001, and epinephrine contents from 0.97 +/- 0.42 to 0.74 +/- 0.42 microgram/liter, P less than 0.02. Decreases in 1-norepinephrine contents were related to the initial plasma concentrations, r = 0.85, P less than 0.001. A similar, but less strong relationship was observed between the initial epinephrine contents and propranolol-induced changes, r = -0.51, P less than 0.01. Propranolol reduced plasma-free fatty acid contents from 1,121 +/- 315 to 943 +/- 274 mumol/liter, P less than 0.001. Decreases in plasma contents of free fatty acids were related to decreases in epinephrine, r = 0.66, P less than 0.001. Propranolol did not cause significant additional changes in plasma catecholamine contents during the subsequent 3 d. In the placebo group 1-norepinephrine contents had decreased 24 h after infarction from 1.92 +/- 0.99 to 1.37 +/- 0.93 microgram/liter, P less than 0.02. Plasma epinephrine contents did not change. Heart rate remained below the control values during the entire study period in the propranolol, but increased in the placebo group. The data indicate that sympathetic hyperactivity, indirectly reflected by plasma catecholamine contents, is acutely reduced by propranolol during evolution of myocardial infarction.

Authors

H S Mueller, S M Ayres

×

Usage data is cumulative from June 2022 through June 2023.

Usage JCI PMC
Text version 239 0
PDF 28 12
Scanned page 150 15
Citation downloads 20 0
Totals 437 27
Total Views 464

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts