Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109666

Interaction of Ca2+ and protein phosphorylation in the rabbit platelet release reaction.

R M Lyons and J O Shaw

Find articles by Lyons, R. in: PubMed | Google Scholar

Find articles by Shaw, J. in: PubMed | Google Scholar

Published February 1, 1980 - More info

Published in Volume 65, Issue 2 on February 1, 1980
J Clin Invest. 1980;65(2):242–255. https://doi.org/10.1172/JCI109666.
© 1980 The American Society for Clinical Investigation
Published February 1, 1980 - Version history
View PDF
Abstract

Ca2+ flux and protein phosphorylation have been implicated as playing an important role in the induction of the platelet release reaction. However, the interactions between Ca2+, protein phosphorylation, and the release reaction have been difficult to study because secretion in human platelets is independent of extracellular Ca2+. Thus, we studied rabbit platelets, which, unlike human platelets, require extracellular Ca2+ for serotonin release to occur. Thrombin, basophil platelet-activating factor (PAF), or ionophore A23187 treatment of intact 32PO43--loaded rabbit platelets resulted in a 200-400% increase in phosphorylation of P7P and P9P, respectively. These peptides were similar in all respects to the peptides phosphorylated in thrombin-treated human platelets. When Ca2+ was replaced in the medium by EGTA, (a) thrombin- and PAF-induced rabbit platelet [3H]serotonin release was inhibited by 60-75%, whereas ionophore-induced release was blocked completely; (b) thrombin-, PAF-, or ionophore-induced P9P phosphorylation was inhibited by 60%; and (c) ionophore-induced P7P phosphorylation was decreased by 60%, whereas that caused by thrombin or PAF was decreased by only 20%. At 0.25-0.5 U/ml of thrombin, phosphorylation preceded [3H]serotonin release with the time for half-maximal release being 26.0 +/- 1.3 s SE (n = 3) and the time for half-maximal phosphorylation being 12.3 +/- 1.3 s SE (n = 3) for P7P and 3.7 +/- 0.17 s SE (n = 3) for P9P. P9P phosphorylation was significantly inhibited (P less than 0.015) by removal by Ca2+ from the medium at a time point before any thrombin- or ionophore-induced serotonin release was detectable. Thus, our data suggest that Ca2+ flux precedes the onset of serotonin secretion and that the rabbit platelet is an appropriate model in which to study the effects of Ca2+ on protein phosphorylation during the platelet release reaction.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 242
page 242
icon of scanned page 243
page 243
icon of scanned page 244
page 244
icon of scanned page 245
page 245
icon of scanned page 246
page 246
icon of scanned page 247
page 247
icon of scanned page 248
page 248
icon of scanned page 249
page 249
icon of scanned page 250
page 250
icon of scanned page 251
page 251
icon of scanned page 252
page 252
icon of scanned page 253
page 253
icon of scanned page 254
page 254
icon of scanned page 255
page 255
Version history
  • Version 1 (February 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts